These high efficiency, compact units employ induced combustion, reliable hot surface ignition and high heat transfer aluminized tubular heat exchangers. The units are factory shipped for installation in upflow or horizontal applications and may be converted for downflow applications.

These furnaces are designed for residential installation in a basement, closet, alcove, attic, recreation room or garage and are also ideal for commercial applications. All units are factory assembled, wired and tested to assure safe dependable and economical installation and operation.

These units are Category IV listed and may not be common vented with another gas appliance as allowed by the National Fuel Gas Code.
SECTION I: SAFETY

This is a safety alert symbol. When you see this symbol on labels or in manuals, be alert to the potential for personal injury.

Understand and pay particular attention to the signal words DANGER, WARNING, or CAUTION.

DANGER indicates an imminently hazardous situation, which, if not avoided, will result in death or serious injury.

WARNING indicates a potentially hazardous situation, which, if not avoided, could result in death or serious injury.

CAUTION indicates a potentially hazardous situation, which, if not avoided may result in minor or moderate injury. It is also used to alert against unsafe practices and hazards involving only property damage.

WARNING
Improper installation may create a condition where the operation of the product could cause personal injury or property damage. Improper installation, adjustment, alteration, service or maintenance can cause injury or property damage. Failure to carefully read and follow all instructions in this manual can result in furnace malfunction, death, personal injury and/or property damage. Only a qualified contractor, installer or service agency should install this product.

SPECIFIC SAFETY RULES AND PRECAUTIONS
1. Only Natural gas or Propane (LP) gas are approved for use with this furnace.
2. Install this furnace only in a location and position as specified in these instructions.
3. A gas-fired furnace for installation in a residential garage must be installed as specified in these instructions.
4. Provide adequate combustion and ventilation air to the furnace space as specified in these instructions.
5. Combustion products must be discharged outdoors. Connect this furnace to an approved vent system only, as specified in SECTION VIII, "COMBUSTION AIR and VENT SYSTEM" of these instructions.
6. Test for gas leaks as specified in these instructions.

WARNING
FIRE OR EXPLOSION HAZARD
Failure to follow the safety warnings exactly could result in serious injury, death, or property damage. Never test for gas leaks with an open flame. Use a commercially available soap solution made specifically for detection of leaks to check all connections. A fire or explosion may result causing property damage, personal injury, or loss of life.

7. Always install the furnace to operate within the furnace’s intended temperature rise range. Only connect the furnace to a duct system which has an external static pressure within the allowable range, as specified on the furnace rating plate.
8. When a furnace is installed so that supply ducts carry air circulated by the furnace to areas outside the space containing the furnace, the return air shall also be handled by duct(s) sealed to the furnace casing and terminating outside the space containing the furnace.
9. It is permitted to use the furnace for heating of buildings or structures under construction where the application and use must comply with all manufacturer’s installation instructions including:
   • Proper vent installation;
   • Furnace operating under thermostatic control;
   • Return air duct sealed to the furnace;
   • Air filters in place;
   • Set furnace input rate and temperature rise per rating plate marking;
   • Means for providing outdoor air required for combustion;
   • Return air temperature maintained between 55°F (13°C) and 80°F (27°C);
   • The air filter must be replaced upon substantial completion of the construction process;
   • Clean furnace, duct work, and components upon substantial completion of the construction process, and verify furnace-operating conditions including ignition, input rate, temperature rise, and venting, according to the manufacturer’s instructions.
10. When installed in a non-HUD-Approved Modular Home or building constructed on-site, combustion air shall not be supplied from occupied spaces.
11. The size of the unit should be based on an acceptable heat loss calculation for the structure. ACCA, Manual J, or other approved methods may be used.
12. When moving or handling this furnace prior to installation, always leave the doors on the furnace to provide support and to prevent damage or warping of the cabinet. When lifting the furnace by the cabinet, support the ends of the furnace rather than lifting by the cabinet flanges at the return air openings (bottom or sides) or supply air opening.
13. When lifting the furnace, it is acceptable to use the primary heat exchanger tubes as a lifting point provided that the tubes are lifted at the front of the heat exchangers where attached to the vestibule panel. Do not use the top return bend of the heat exchangers as lifting points as the tubes may shift out of position or their location brackets/baffles.

IMPORTANT
During installation, doors should remain on the furnace when moving or lifting.

SAFETY REQUIREMENTS

WARNING
This product must be installed in strict compliance with the installation instructions and any applicable local, state, and national codes including, but not limited to building, electrical, and mechanical codes.

• Refer to the unit rating plate for the furnace model number, and then see the dimensions page of this instruction for return air plenum dimensions in Figure 13. The plenum must be installed according to the instructions.
• Provide clearances from combustible materials as listed under Clearances to Combustibles. Refer to Table 1.
• Provide clearances for servicing. Ensure that service access is allowed for both the burners and blower.
• These models ARE NOT CSA listed or approved for installation into a HUD Approved Modular Home or a Manufactured (Mobile) Home.
• This furnace is not approved for installation in trailers or recreational vehicles.
The furnace requires OUTDOOR AIR for combustion when the furnace is located in any of the following environments.

- Buildings with indoor pools
- Chemical exposure
- Commercial buildings
- Furnaces installed in hobby or craft rooms
- Furnaces installed in laundry rooms
- Furnaces installed near chemical storage areas
- Restricted environments

The furnace requires OUTDOOR AIR for combustion when the furnace is located in an area where the furnace is being exposed to the following substances and/or chemicals.

- Antistatic fabric softeners for clothes dryers
- Carbon tetrachloride
- Cements and glues
- Chlorine based swimming pool chemicals
- Chlorinated waxes and cleaners
- Cleaning solvents (such as perchloroethylene)
- De-icing salts or chemicals
- Halogen type refrigerants
- Hydrochloric acid
- Masonry acid washing materials
- Permanent wave solutions
- Printing inks, paint removers, varnishes, etc.
- Water softening chemicals

When outdoor air is used for combustion, the combustion air intake duct system termination must be located external to the building and in an area where there will be no exposure to the substances listed above.

**CODES AND STANDARDS**

Follow all national, local codes and standards in addition to this installation manual. The installation must comply with regulations of the serving gas supplier, local building, heating, plumbing, and other codes. In absence of local codes, the installation must comply with the national codes listed below and all authorities having jurisdiction.

In the United States and Canada, follow all codes and standards for the following, using the latest edition available:

**STEP 1 - Safety**

- CANADA: CAN/CGA-B149.1 National Standard of Canada. Natural Gas and Propane Installation Codes (NSCNPIC)

**STEP 2 - General Installation**

- US: Current edition of the NFGC and NFPA 90B. For copies, contact the
  National Fire Protection Association Inc.
  Batterypark
  Quincy, MA 02269

  or for only the NFGC, contact the
  American Gas Association,
  400 N. Capital, N.W.
  Washington DC 20001
  or www.NFPA.org
- CANADA: NSCNPIC. For a copy contact:
  Standard Sales, CSA International
  178 Rexdale Boulevard
  Etobicoke, (Toronto) Ontario Canada M9W 1RS

**STEP 3 - Combustion and Ventilation Air**

- US: Section 5.3 of the NFGC, air for Combustion and Ventilation
- CANADA: Part 7 of NSCNPIC, Venting Systems and Air Supply for Appliances

**STEP 4 - Duct Systems**


**STEP 5 - Acoustical Lining and Fibrous Glass Duct**

- US and CANADA: Current edition of SMACNA and NFPA 90B as tested by UL Standard 181 for Class 1 Rigid Air Ducts

**STEP 6 - Gas Piping and Gas Pipe Pressure Testing**

- US: NFGC; chapters 2, 3, 4, & 9 and National Plumbing Codes
- CANADA: NSCNPIC Part 5

**STEP 7 - Electrical Connections**

- US: National Electrical Code (NEC) ANSI/NFPA 70
- CANADA: Canadian Electrical Code CSA C22.1

These instructions cover minimum requirements and conform to existing national standards and safety codes. In some instances these instructions exceed certain local codes and ordinances, especially those who have not kept up with changing residential and non-HUD modular home construction practices. These instructions are required as a minimum for a safe installation.
FOR FURNACES INSTALLED IN THE COMMONWEALTH OF MASSACHUSETTS ONLY

For all side wall horizontally vented gas fueled equipment installed in every dwelling, building or structure used in whole or in part for residential purposes, including those owned or operated by the Commonwealth and where the side wall exhaust vent termination is less than seven (7) feet above finished grade in the area of the venting, including but not limited to decks and porches, the following requirements shall be satisfied:

1. INSTALLATION OF CARBON MONOXIDE DETECTORS. At the time of installation of the side wall horizontal vented gas fueled equipment, the installing plumber or gasfitter shall observe that a hard wired carbon monoxide detector with an alarm and battery backup is installed on the floor level where the gas equipment is to be installed. In addition, the installing plumber or gasfitter shall observe that a battery operated or hard wired carbon monoxide detector with an alarm is installed on each additional level of the dwelling, building or structure served by the side wall horizontal vented gas fueled equipment. It shall be the responsibility of the property owner to secure the services of qualified licensed professionals for the installation of hard wired carbon monoxide detectors.
   a. In the event that the side wall horizontally vented gas fueled equipment is installed in a crawl space or an attic, the hard wired carbon monoxide detector with alarm and battery backup may be installed on the next adjacent floor level.
   b. In the event that the requirements of this subdivision can not be met at the time of completion of installation, the owner shall have a period of thirty (30) days to comply with the above requirements; provided, however, that during said thirty (30) day period, a battery operated carbon monoxide detector with an alarm shall be installed.

2. APPROVED CARBON MONOXIDE DETECTORS. Each carbon monoxide detector as required in accordance with the above provisions shall comply with NFPA 720 and be ANSI/UL 2034 listed and IAS certified.

3. SIGNAGE. A metal or plastic identification plate shall be permanently mounted to the exterior of the building at a minimum height of eight (8) feet above grade directly in line with the exhaust vent terminal for the horizontally vented gas fueled heating appliance or equipment. The sign shall read, in print size no less than one-half (1/2) inch in size, "GAS VENT DIRECTLY BELOW. KEEP CLEAR OF ALL OBSTRUCTIONS."

4. INSPECTION. The state or local gas inspector of the side wall horizontally vented gas fueled equipment shall not approve the installation unless, upon inspection, the inspector observes carbon monoxide detectors and signage installed in accordance with the provisions of 248 CMR 5.08(2)(a)1 through 4.

INSPECTION

As soon as a unit is received, it should be inspected for possible damage during transit. If damage is evident, the extent of the damage should be noted on the carrier’s freight bill. A separate request for inspection by the carrier’s agent should be made in writing. Also, before installation, the unit should be checked for screws or bolts which may have loosened in transit. There are no shipping or spacer brackets which need to be removed from the interior of this unit.

FURNACE LOCATION AND CLEARANCES

The furnace shall be located using the following guidelines:

1. Where a minimum amount of air intake/vent piping and elbows will be required.
2. As centralized with the air distribution as possible.
3. Where adequate combustion air will be available (particularly when the appliance is not using outdoor combustion air).
4. Where it will not interfere with proper air circulation in the confined space.
5. Where the outdoor vent terminal will not be blocked or restricted. Refer to "VENT CLEARANCES" located in SECTION VII of these instructions. These minimum clearances must be maintained in the installation.
6. Where the unit will be installed in a level position with no more than 1/4" (6.4 mm) slope side-to-side and front-to-back to provide proper condensate drainage.

Installation in freezing temperatures:

1. Furnace shall be installed in an area where ventilation facilities provide for safe limits of ambient temperature under normal operating conditions. Ambient temperatures must not fall below 32°F (0°C) unless the condensate system is protected from freezing.

![WARNING]

**WARNING**

Improper installation in an ambient below 32°F (0.0°C) could create a hazard, resulting in damage, injury, or death.

2. Do not allow return air temperature to be below 55°F (13°C) for extended periods. To do so may cause condensation to occur in the main heat exchanger, leading to premature heat exchanger failure.

3. If this furnace is installed in an unconditioned space and an extended power failure occurs, there will be potential damage to the internal components. Following a power failure situation, do not operate the unit until inspection and repairs are performed.

![WARNING]

**WARNING**

Liquid anti-freeze will cause damage to internal plastic parts of this furnace. **DO NOT attempt to winterize the furnace using liquid anti-freeze.**

Clearances for access/service:

Ample clearances should be provided to permit easy access to the unit. The following minimum clearances are recommended:

1. Twenty-four (24) inches (61 cm) between the front of the furnace and an adjacent wall or another appliance, when access is required for servicing and cleaning.

2. Eighteen (18) inches (46 cm) at the side where access is required for passage to the front when servicing or for inspection or replacement of flue/vent connections.

In all cases, accessibility clearances shall take precedence over clearances for combustible materials where accessibility clearances are greater.

Installation in a residential garage:

A gas-fired furnace for installation in a residential garage must be installed so the burner(s) and the ignition source are located not less than 18” (46 cm) above the floor, and the furnace must be located or protected to avoid physical damage by vehicles.

**Table 1: Unit Clearances to Combustibles**

<table>
<thead>
<tr>
<th>Application</th>
<th>Upflow</th>
<th>Downflow</th>
<th>Horizontal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top</td>
<td>1°</td>
<td>0°</td>
<td>0°</td>
</tr>
<tr>
<td>Vent</td>
<td>0°</td>
<td>0°</td>
<td>0°</td>
</tr>
<tr>
<td>Rear</td>
<td>0°</td>
<td>0°</td>
<td>0°</td>
</tr>
<tr>
<td>Side</td>
<td>0°</td>
<td>0°</td>
<td>1°</td>
</tr>
<tr>
<td>Front¹</td>
<td>0°</td>
<td>0°</td>
<td>0°</td>
</tr>
<tr>
<td>Floor</td>
<td>Combustible¹</td>
<td>Combustible²</td>
<td>Combustible</td>
</tr>
<tr>
<td>Closet</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Line Contact</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

¹. 1/4" clearance in front and 18" on side recommended for service access. All furnaces approved for alcove and attic installation.

². For combustible floors only when used with combustible floor base accessory.
SECTION II: DUCTWORK

DUCTWORK GENERAL INFORMATION

The duct system's design and installation must:

1. Handle an air volume appropriate for the served space and within the operating parameters of the furnace specifications.
2. Be installed in accordance with the National Fire Protection Association as outlined in NFPA standard 90B (latest editions) or applicable national, provincial, state, and local fire and safety codes.
3. Create a closed duct system. For residential and non-HUD Modular Home installations, when a furnace is installed so that the supply ducts carry air circulated by the furnace to areas outside the space containing the furnace, the return air shall also be handled by a duct(s) sealed to the furnace casing and terminating outside the space containing the furnace.
4. Complete a path for heated or cooled air to circulate through the air conditioning and heating equipment and to and from the conditioned space.

**CAUTION**

The indoor coil must be installed in the supply air duct, downstream of the furnace. Cooled air may not be passed over the heat exchanger.

When the furnace is used with an indoor coil, the coil must be installed parallel with, or in the supply air side of the furnace to avoid condensation in the primary heat exchanger. When a parallel flow arrangement is used, dampers or other means used to control airflow must be adequate to prevent chilled air from entering the furnace. If manually operated, the damper must be equipped with means to prevent the furnace or the air conditioner from operating unless the damper is in full heat or cool position.

When replacing an existing furnace, if the existing plenum is not the same size as the new furnace then the existing plenum must be removed and a new plenum installed that is the proper size for the new furnace. If the plenum is shorter than 12” (30.5 cm) the turbulent air flow may cause the limit controls not to operate as designed, or the limit controls may not operate at all.

The duct system is a very important part of the installation. If the duct system is improperly sized, the furnace will not operate properly.

The ducts attached to the furnace plenum should be of sufficient size so that the furnace operates at the specified external static pressure and within the air temperature rise specified on the nameplate.

**IMPORTANT**

The minimum plenum height is 12” (30.5 cm). The furnace will not operate properly on a shorter plenum height. The minimum recommended rectangular duct height is 4” (10.2 cm) attached to the plenum.

**WARNING**

The duct system must be properly sized to obtain the correct airflow for the furnace size that is being installed. Refer to the furnace rating plate for the correct rise range and static pressures or to Table 7 for the correct rise range.

If the ducts are undersized, the result will be high duct static pressures and/or high temperature rises which can result in a heat exchanger OVERHEATING CONDITION. This condition can result in premature heat exchanger failure, which can result in personal injury, property damage, or death.

If a matching cased indoor coil is used, it may be placed directly on the furnace outlet and sealed to prevent leakage. If an uncased indoor coil with a thermoplastic drain pan is to be installed in the upflow/horizontal configuration, then extra 2” (5.1 cm) minimum spacing may be needed to ensure against drain pan distortion.

On all installations without a coil, a removable access panel is recommended in the outlet duct such that smoke or reflected light would be observable inside the casing to indicate the presence of leaks in the heat exchanger. This access cover shall be attached in such a manner as to prevent leaks.

**DUCT FLANGES**

Four flanges are provided to attach ductwork to the furnace. These flanges are rotated down for shipment. In order to use the flanges, remove the screw holding an individual flange, rotate the flange so it is in the upward position and reinstall the screw. Repeat this for all 4 flanges.

If the flanges are not used, they must remain in the rotated down position as shipped.

**DUCTWORK INSTALLATION AND SUPPLY PLENUM CONNECTION - UPFLOW/HORIZONTAL**

Attach the supply plenum to the furnace outlet. The use of an approved flexible duct connector is recommended on all installations. This connection should be sealed to prevent air leakage. The sheet metal should be crosshatched to eliminate any popping of the sheet metal when the indoor fan is energized.

**FLOOR BASE AND DUCTWORK INSTALLATION - DOWNFLOW**

Installations on combustible material or directly on any floors must use a combustible floor base shown in Figure 8. Follow the instructions supplied with the combustible floor base accessory. This combustible floor base can be replaced with a matching indoor coil, properly sealed to prevent leaks. Follow the instructions supplied with the indoor coil cabinet for installing the cabinet to the duct connector. Plug intake and vent pipe holes in bottom panel and move grommet to desired vent side exit.

**Downflow Air - Indoor Coil Cabinet**

The furnace should be installed with coil cabinet part number specifically intended for downflow application. If a matching indoor coil is used, it may be placed directly on the furnace outlet and sealed to prevent leakage. For details of the coil cabinet dimensions and installation requirements, refer to the installation instructions supplied with the coil cabinet.

Attach the indoor coil cabinet to the duct connector, and then position the furnace on top of the coil cabinet. The connection to the furnace, coil cabinet, duct connector, and supply air duct must be sealed to prevent air leakage.
COIL INSTALLATION

**IMPORTANT**
On all installations without a coil, a removable access panel is recommended in the outlet duct such that smoke or reflected light would be observable inside the casing to indicate the presence of leaks in the heat exchanger. This access cover shall be attached in such a manner as to prevent leaks.

**COIL/FURNACE ASSEMBLY - MC/FC/PC SERIES COILS**

Position the coil casing over or under the furnace opening as shown in Figure 2 after configuring coil flanges as required. See "Coil Flange" section below.

**COIL FLANGE INSTALLATION**
The coil cabinet includes four removable flanges to allow proper fit up with furnaces having inlet and outlet configurations. The flanges are attached to the inside top of the coil cabinet in the factory during production. The flanges are rotated down for shipment. In order to use the flanges, remove the screw holding an individual flange, rotate the flange so it is in the upward position, and reinstall the screw. Repeat the procedure for all 4 flanges. See Figure 3.

**FIGURE 2:** Vertical Applications

**FURNACE ASSEMBLY - MC & FC SERIES COILS**
These coils are factory shipped for installation in either upflow or downflow applications with no conversion.

Position the coil casing over or under the furnace opening as shown in Figure 2 after configuring coil flanges as required. See "Coil Flange" section below.

**FURNACE ASSEMBLY - MC SERIES COILS ONLY**
MC coils are supplied ready to be installed in a horizontal position. A horizontal pan is factory installed. MC coils should be installed in all horizontal applications with the horizontal drain pan side down.

**FIGURE 4:** Horizontal Right Application
For horizontal left hand applications, no conversion is required to an MC coil when used with a downflow/horizontal furnace. A mounting plate, supplied with every coil, should always be installed on the side designated as top side. See Figures 4 and 5.

**FURNACE ASSEMBLY - PC SERIES COILS**
These upflow coils are designed for installation on top of upflow furnaces only.
If the coil is used with a furnace of a different size, use a 45° transition to allow proper air distribution through the coil.

1. Position the coil casing over the furnace opening as shown in Figure 6.
2. Place the ductwork over the coil casing flange and secure.
3. Check for air leakage between the furnace and coil casing and seal appropriately.

**CAUTION**
Do not drill any holes or drive any screws into the front duct flange on the coil in order to prevent damaging coil tubing. See Figure 6.
Dimension "C" should be at least 2/3 of dimension "D". See Figure 6.

**CRITICAL COIL PROJECTION**

The coil assembly must be located in the duct such that a minimum distance is maintained between the top of the coil and the top of the duct. Refer to Table 2.

**COIL / FURNACE ASSEMBLY - HD SERIES COILS**

Horizontal duct coils are referred to as HD series coils. This coil must be connected using a supply duct transition. This coil is direction sensitive. Refer to the HD coil installation instructions for more information.

**NOTICE**

Each coil is shipped with external tie plates that should be used to secure the coil to the furnace. They should be installed on the back and both sides of the coil using sheet metal screws. See Figure 7.

**RESIDENTIAL AND MODULAR HOME UPFLOW RETURN PLENUM CONNECTION**

Return air may enter the furnace through the side(s) or bottom depending on the type of application. Return air may not be connected into the rear panel of the unit.

**SIDE RETURN APPLICATION**

Side return applications pull return air through an opening cut in the side of the furnace casing. This furnace is supplied with a bottom block-off panel that should be left in place if a side return is to be used. If the furnace is to be installed on a flat, solid surface, this bottom panel will provide an adequate seal to prevent air leakage through the unused bottom opening. However, if the furnace is to be installed on a surface that is uneven, or if it is to be installed on blocks or otherwise raised off the floor, it will be necessary to seal the edges of the bottom panel to the casing using tape or other appropriate gasket material to prevent air leakage.

**BOTTOM RETURN AND ATTIC INSTALLATIONS**

Bottom return applications normally pull return air through a base platform or return air plenum. Be sure the return platform structure or return air plenum is suitable to support the weight of the furnace.

The internal bottom panel must be removed for this application.

Attic installations must meet all minimum clearances to combustibles and have floor support with required service accessibility.

---

**Table 2: Coil Projection Dimensions - PC Series Coils**

<table>
<thead>
<tr>
<th>COIL SIZE</th>
<th>DIMENSION &quot;C&quot; INCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC18</td>
<td>3-1/2</td>
</tr>
<tr>
<td>PC24</td>
<td>4-1/2</td>
</tr>
<tr>
<td>PC30, PC32, PC35</td>
<td>4-1/2</td>
</tr>
<tr>
<td>PC42, PC43, PC36, PC37</td>
<td>5-1/2</td>
</tr>
<tr>
<td>PC48</td>
<td>6-1/2</td>
</tr>
<tr>
<td>PC60</td>
<td>9</td>
</tr>
</tbody>
</table>

Dimension "C" should be at least 2/3 of dimension "D". See Figure 6.
**HORIZONTAL APPLICATION**

This appliance is certified for line contact when the furnace is installed in the horizontal left or right position. The line contact is only permissible between lines that are formed by the intersection of the top and two sides of the furnace and the building joists, studs or framing. This line may be in contact with combustible material. Refer to Figure 10.

**ATTIC INSTALLATION**

When moving or handling this furnace prior to installation, always leave the doors on the furnace to provide support and to prevent damage or warping of the cabinet. When lifting the furnace, support the ends of the furnace rather than lifting by the cabinet flanges at the return air openings (bottom or sides) or supply air opening.

It is acceptable to use the primary heat exchanger tubes as a lifting point provided that the tubes are lifted at the front of the heat exchangers where attached to the vestibule panel. Do not use the top return bend of the heat exchangers as lifting points as the tubes may shift out of position or their location brackets/baffles.

**SUSPENDED FURNACE / CRAWL SPACE INSTALLATION**

The furnace can be hung from floor joists or installed on suitable blocks or pads. Blocks or pad installations shall provide adequate height to ensure that the unit will not be subject to water damage. Units may also be suspended from rafters or floor joists using rods, pipe angle supports or straps. In all cases, the furnace should be supported with rods, straps, or angle supports at three locations to properly support the furnace. Place one support at the supply end of the furnace, one support located approximately in the center of the furnace near the blower shelf, and the third support should be at the return end of the furnace. Maintain a 6" (15.2 cm) minimum clearance between the front of the furnace and the support rods or straps.

All six suspension points must be level to ensure proper and quiet furnace operation. When suspending the furnace, use a secure platform constructed of plywood or other building materials secured to the floor or ceiling joists. Refer to Figure 11 for details and additional information.

**DOWNFLOW APPLICATION**

The furnace is shipped in the upflow configuration. To configure the furnace in a downflow position, it is necessary to rotate the vent blower 90° left or right so that the vent pipe passes through the side of the furnace casing. See Figure 12.

---

**FIGURE 9:** Horizontal Application

**FIGURE 10:** Typical Attic Installation

**FIGURE 11:** Typical Suspended Furnace / Crawl Space Installation

**FIGURE 12:** Downflow Venting
SECTION III: FILTERS
FILTER INSTALLATION
All applications require the use of a field installed filter. All filters and mounting provision must be field supplied.
Filters must be installed external to the furnace cabinet. **DO NOT attempt to install filters inside the furnace.**

**NOTICE**
Single side return above 1800 CFM is approved as long as the filter velocity does not exceed filter manufacturer’s recommendation and a transition is used to allow use on a 20x25 filter.

### Table 3: Cabinet and Duct Dimensions

<table>
<thead>
<tr>
<th>BTUH (kW) Input</th>
<th>Nominal CFM (m³/min)</th>
<th>Cabinet Size</th>
<th>Cabinet Dimensions</th>
<th>Approximate Operating Weights</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A (in)</td>
<td>A (cm)</td>
<td>B (in)</td>
</tr>
<tr>
<td>40 (11.7)</td>
<td>1000 (28.3)</td>
<td>14 1/2</td>
<td>36.8</td>
<td>13 3/8</td>
</tr>
<tr>
<td>60 (17.6)</td>
<td>1200 (34.0)</td>
<td>17 1/2</td>
<td>44.4</td>
<td>16 3/8</td>
</tr>
<tr>
<td>80 (23.4)</td>
<td>1200 (34.0)</td>
<td>17 1/2</td>
<td>44.4</td>
<td>16 3/8</td>
</tr>
<tr>
<td>80 (23.4)</td>
<td>1600 (45.3)</td>
<td>21</td>
<td>53.3</td>
<td>19 7/8</td>
</tr>
<tr>
<td>100 (29.3)</td>
<td>1600 (45.3)</td>
<td>21</td>
<td>53.3</td>
<td>19 7/8</td>
</tr>
<tr>
<td>100 (29.3)</td>
<td>2000 (56.6)</td>
<td>21</td>
<td>53.3</td>
<td>19 7/8</td>
</tr>
<tr>
<td>120 (35.1)</td>
<td>2000 (56.6)</td>
<td>24 1/2</td>
<td>62.2</td>
<td>23 3/8</td>
</tr>
</tbody>
</table>

### Table 4: Recommended Filter Sizes (High Velocity 600 FPM)

<table>
<thead>
<tr>
<th>CFM (m³/min)</th>
<th>Cabinet Size</th>
<th>Side (in)</th>
<th>Bottom (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 (28.3)</td>
<td>A</td>
<td>16 x 25</td>
<td>14 x 25</td>
</tr>
<tr>
<td>1200 (34.0)</td>
<td>B</td>
<td>16 x 25</td>
<td>16 x 25</td>
</tr>
<tr>
<td>1600 (45.3)</td>
<td>C</td>
<td>16 x 25</td>
<td>20 x 25</td>
</tr>
<tr>
<td>2000 (56.8)</td>
<td>C (2)</td>
<td>16 x 25</td>
<td>20 x 25</td>
</tr>
<tr>
<td>2000 (56.8)</td>
<td>D (2)</td>
<td>16 x 25</td>
<td>22 x 25</td>
</tr>
</tbody>
</table>

1. Air velocity through throwaway type filters may not exceed 300 feet per minute (91.4 m/min). All velocities over this require the use of high velocity filters.
2. Do not exceed 1800 CFM using a single side return and a 16x25 filter. For CFM greater than 1800, you may use two side returns or one side and the bottom or one side return with a transition to allow use of a 20x25 filter.
SIDE RETURN
Locate the "L" shaped corner locators. These indicate the size of the cut-out to be made in the furnace side panel. Refer to Figure 14.

**FIGURE 14: Side Return Cutout Markings**

Install the side filter rack following the instructions provided with that accessory. If a filter(s) is provided at another location in the return air system, the ductwork may be directly attached to the furnace side panel.

**SECTION IV: GAS PIPING**

**GAS SAFETY**

**DANGER**

An overpressure protection device, such as a pressure regulator, must be installed in the gas piping system upstream of the furnace and must act to limit the downstream pressure to the gas valve so it does not exceed 0.5 psig [14" w.c. (3.48 kPa)]. Pressures exceeding 0.5 psig [14" w.c. (3.48 kPa)] at the gas valve will cause damage to the gas valve, resulting in a fire or explosion or will cause damage to the furnace or some of its components that will result in property damage and loss of life.

**HORIZONTAL APPLICATION**

**Horizontal Filters**

**CAUTION**

All filters and mounting provision must be field supplied. All installations must have a filter installed.

Any branch duct (rectangular or round duct) attached to the plenum must attach to the vertical plenum before the filter. The use of straps and/or supports is required to support the weight of the external filter box.

**Downflow Filters**

Downflow furnaces typically are installed with the filters located above the furnace, extending into the return air plenum or duct. Any branch duct (rectangular or round duct) attached to the plenum must attach to the vertical plenum above the filter height.

Filter(s) may be located in the duct system external to the furnace using an external duct filter box attached to the furnace plenum or at the end of the duct in a return filter grille(s). The use of straps and/or supports is required to support the weight of the external filter box.

**FIGURE 15: Gas Valve**

**IMPORTANT**

Plan your gas supply before determining the correct gas pipe entry. Use 90-degree service elbow(s), or short nipples and conventional 90-degree elbow(s) to enter through the cabinet access holes.

**GAS PIPING INSTALLATION**

Properly sized wrought iron, approved flexible or steel pipe must be used when making gas connections to the unit. If local codes allow the use of a flexible gas appliance connection, always use a new listed connector. Do not use a connector that has previously serviced another gas appliance.

Some utility companies or local codes require pipe sizes larger than the minimum sizes listed in these instructions and in the codes. The furnace rating plate and the instructions in this section specify the type of gas approved for this furnace. Only use those approved gases. The installation of a drip leg and ground union is required. Refer to Figure 16.

**FIGURE 16: Gas Piping**

**NOTE:** Ground Union maybe installed inside or outside unit.
An accessible manual shutoff valve must be installed upstream of the furnace gas controls and within 6 feet (1.8 m) of the furnace.

The furnace must be isolated from the gas supply piping system by closing its individual external manual shutoff valve during any pressure testing of the gas supply piping system at pressures equal to or less than 0.5 psig (3.5 kPa).

GAS ORIFICE CONVERSION FOR PROPANE (LP)
This furnace is constructed at the factory for natural gas-fired operation, but may be converted to operate on propane (LP) gas by using a factory-supplied LP conversion kit. Follow the instructions supplied with the LP kit.

HIGH ALTITUDE MANIFOLD PRESSURE ADJUSTMENT
This furnace is constructed at the factory for natural gas-fired operation at 0 – 7,999 feet (0 – 2,438 m) above sea level. The manifold pressure must be changed in order to maintain proper and safe operation when the furnace is installed in a location where the altitude is greater than 7,999 feet (2,438 m) above sea level. Refer to Table 5 for proper manifold pressure settings. High fire manifold pressure must be set before adjusting low fire.

HIGH ALTITUDE PRESSURE SWITCH CONVERSION
For installation where the altitude is less than 5,000 feet (1,524 m), it is not required that the pressure switch be changed unless you are in an area subject to low pressure inversions.

IMPORTANT
An accessible manual shutoff valve must be installed upstream of the furnace gas controls and within 6 feet (1.8 m) of the furnace.

Gas piping may be connected from either side of the furnace using any of the gas pipe entry knockouts on both sides of the furnace. Refer to Figure 16.

### Table 5: Nominal Manifold Pressure - High Fire

<table>
<thead>
<tr>
<th>Manifold Pressures</th>
<th>0-7999</th>
<th>8000-8999</th>
<th>9000-9999</th>
</tr>
</thead>
<tbody>
<tr>
<td>in. w.c.</td>
<td>in. w.c.</td>
<td>in. w.c.</td>
<td>in. w.c.</td>
</tr>
<tr>
<td>800</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>850</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>900</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>950</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>1000</td>
<td>3.5</td>
<td>3.2</td>
<td>2.9</td>
</tr>
<tr>
<td>1050</td>
<td>3.5</td>
<td>2.9</td>
<td>2.7</td>
</tr>
<tr>
<td>1100</td>
<td>3.2</td>
<td>2.7</td>
<td>2.4</td>
</tr>
<tr>
<td>2500 (LP)</td>
<td>9.8</td>
<td>8.2</td>
<td>7.5</td>
</tr>
</tbody>
</table>

### Table 6: Nominal Manifold Pressure - Low Fire

<table>
<thead>
<tr>
<th>First Stage Manifold Pressures</th>
<th>0-7999</th>
<th>8000-8999</th>
<th>9000-9999</th>
</tr>
</thead>
<tbody>
<tr>
<td>in. w.c.</td>
<td>in. w.c.</td>
<td>in. w.c.</td>
<td>in. w.c.</td>
</tr>
<tr>
<td>800</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>850</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>900</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>950</td>
<td>1.7</td>
<td>1.7</td>
<td>1.5</td>
</tr>
<tr>
<td>1000</td>
<td>1.6</td>
<td>1.5</td>
<td>1.4</td>
</tr>
<tr>
<td>1050</td>
<td>1.5</td>
<td>1.4</td>
<td>1.3</td>
</tr>
<tr>
<td>1100</td>
<td>1.3</td>
<td>1.2</td>
<td>1.1</td>
</tr>
<tr>
<td>2500 (LP)</td>
<td>4.1</td>
<td>3.8</td>
<td>3.5</td>
</tr>
</tbody>
</table>

### DANGER
PROPANE AND HIGH ALTITUDE CONVERSION KITS
It is very important to choose the correct kit and/or gas orifices for the altitude and the type of gas for which the furnace is being installed. Only use natural gas in furnaces designed for natural gas. Only use propane (LP) gas for furnaces that have been properly converted to use propane (LP) gas. Do not use this furnace with butane gas.

Incorrect gas orifices or a furnace that has been improperly converted will create an extremely dangerous condition resulting in premature heat exchanger failure, excessive sooting, high levels of carbon monoxide, personal injury, property damage, a fire hazard and/or death.

High altitude and propane (LP) conversions are required in order for the appliance to satisfactorily meet the application. An authorized distributor or dealer must make all gas conversions.

In Canada, a certified conversion station or other qualified agency, using factory specified and/or approved parts, must perform the conversion. The installer must take every precaution to ensure that the furnace has been converted to the proper gas orifice size when the furnace is installed. Do not attempt to drill out any orifices to obtain the proper orifice size. Drilling out a gas orifice will cause misalignment of the burner flames, causing premature heat exchanger burnout, high levels of carbon monoxide, excessive sooting, a fire hazard, personal injury, property damage and/or death.
**SECTION V: ELECTRICAL POWER**

**ELECTRICAL POWER CONNECTIONS**

**CAUTION**

Use copper conductors only.

**Table 7: Ratings & Physical / Electrical Data**

<table>
<thead>
<tr>
<th>Input High/Low MBH</th>
<th>Output High/Low MBH</th>
<th>Nominal Airflow CFM m³/min</th>
<th>Cabinet Width in.</th>
<th>Total Unit Amps</th>
<th>AFUE</th>
<th>High Fire Air Temp. Rise °F °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>40/26</td>
<td>12/8</td>
<td>38/25</td>
<td>11/7</td>
<td>1000</td>
<td>28.3</td>
<td>14-1/2</td>
</tr>
<tr>
<td>60/39</td>
<td>18/11</td>
<td>58/37</td>
<td>17/11</td>
<td>1200</td>
<td>34</td>
<td>17-1/2</td>
</tr>
<tr>
<td>80/52</td>
<td>23/15</td>
<td>77/50</td>
<td>22/14</td>
<td>1200</td>
<td>34</td>
<td>17-1/2</td>
</tr>
<tr>
<td>100/65</td>
<td>29/19</td>
<td>96/62</td>
<td>28/18</td>
<td>1600</td>
<td>45.3</td>
<td>21</td>
</tr>
<tr>
<td>100/65</td>
<td>29/19</td>
<td>96/62</td>
<td>28/18</td>
<td>2000</td>
<td>56.6</td>
<td>21</td>
</tr>
<tr>
<td>120/78</td>
<td>35/23</td>
<td>115/75</td>
<td>33/22</td>
<td>2000</td>
<td>56.6</td>
<td>24-1/2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Low Fire Air Temp. Rise</th>
<th>Max. Outlet Air Temp.</th>
<th>Blower HP</th>
<th>Blower Size</th>
<th>Max. Over-current Protect</th>
<th>Min. Wire Size (awg) @ 75 ft.</th>
<th>Operating Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>°F</td>
<td>°C</td>
<td>°F</td>
<td>°C</td>
<td>HP</td>
<td>Amps</td>
<td>in.</td>
</tr>
<tr>
<td>25-55</td>
<td>14-30</td>
<td>190</td>
<td>88</td>
<td>1/2</td>
<td>6.8</td>
<td>11 x 8</td>
</tr>
<tr>
<td>35-65</td>
<td>19-36</td>
<td>190</td>
<td>88</td>
<td>1/2</td>
<td>6.8</td>
<td>11 x 8</td>
</tr>
<tr>
<td>35-65</td>
<td>19-36</td>
<td>190</td>
<td>88</td>
<td>1/2</td>
<td>6.8</td>
<td>11 x 8</td>
</tr>
<tr>
<td>25-55</td>
<td>14-30</td>
<td>190</td>
<td>88</td>
<td>1/2</td>
<td>6.8</td>
<td>11 x 10</td>
</tr>
<tr>
<td>30-60</td>
<td>17-33</td>
<td>190</td>
<td>88</td>
<td>1/2</td>
<td>6.8</td>
<td>11 x 10</td>
</tr>
<tr>
<td>30-60</td>
<td>17-33</td>
<td>190</td>
<td>88</td>
<td>3/4</td>
<td>8.4</td>
<td>11 x 11</td>
</tr>
<tr>
<td>45-75</td>
<td>25-42</td>
<td>190</td>
<td>88</td>
<td>3/4</td>
<td>8.4</td>
<td>11 x 11</td>
</tr>
</tbody>
</table>

Field wiring to the unit must be grounded. Electric wires that are field installed shall conform to the temperature limitation for 63°F (35°C) rise wire when installed in accordance with instructions. Refer to Table 7 in these instructions for specific furnace electrical data.

**SUPPLY VOLTAGE CONNECTIONS**

**FIGURE 17: Electrical Wiring**

1. Provide a power supply separate from all other circuits. Install over-current protection and disconnect switch per local/national electrical codes. The switch should be close to the unit for convenience in servicing. With the disconnect or fused switch in the OFF position, check all wiring against the unit wiring label. Refer to the wiring diagram in this instruction.

2. Remove the wiring box cover screws. Route all power wiring through a conduit connector or other proper bushing that is field installed into the unit opening and the junction box. In the junction box there is a black wire, a white wire and a green ground screw. Connect the power supply as shown on the unit’s wiring label located on the inside of the blower compartment door, or the wiring schematic in this section. Connect the black wire to L1 (hot) from the power supply. Connect the white wire to neutral. Connect the ground wire (installer-supplied) to the green (equipment ground) screw. An alternate wiring method is to use a field-provided 2" (5.1 cm) x 4" (10.2 cm) box and cover on the outside of the furnace. Route the furnace leads into the box using a protective bushing where the wires pass through the furnace panel. After making the wiring connections replace the wiring box cover and screws. Refer to Figure 17.

3. The furnace’s control system requires correct polarity of the power supply and a proper ground connection. Refer to Figure 17.

**IMPORTANT**

The power connection leads and wiring box may be relocated to the opposite side of the furnace. Remove the screws and cut wire tie holding excess wiring. Reposition on the opposite side of the furnace and fasten using holes provided.

**LOW VOLTAGE CONTROL WIRING CONNECTIONS**

Install the field-supplied 18ga minimum thermostat wiring by following the instructions that come with the thermostat. With the thermostat set in the OFF position and the main electrical source disconnected, connect the thermostat wiring from the wiring connections to the terminal board on the ignition module, as shown in Figures 18 or 19. Electronic thermostats require the common wire to be connected. Do not use power stealing thermostats. Apply strain relief to the thermostat wires passing through cabinet. If air conditioning equipment is installed, use thermostat wiring to connect the Y and C terminals on the furnace control board to the proper wires on the condensing unit (unit outside).

**IMPORTANT**

Set the heat anticipator in the room thermostat to 0.4 amps. Setting it lower will cause short cycles. Setting it higher will cause the room temperature to exceed the set points.

**IMPORTANT**

Some electronic thermostats do not have adjustable heat anticipators. They should be set to six cycles per hour. Follow the thermostat manufacturer’s instructions.

The 24-volt, 40 VA transformer is sized for the furnace components only, and should not be connected to power auxiliary devices such as humidifiers, air cleaners, etc. The transformer may provide power for an air conditioning unit contactor.
For additional connection diagrams for all Johnson Controls Unitary Products’ equipment refer to “Low Voltage System Wiring” document available on-line at www.upgnet.com in the Product Catalog Section.

FIGURE 18: Thermostat Chart - Two Stage AC with Two Stage Standard ECM Furnaces

If using a single stage air conditioning unit, connect the “Y” connection to Y/Y2 on furnace control board.
If using a single stage heat pump unit, connect the “Y” connection to Y/Y2 on furnace control board.

**FIGURE 19:** Thermostat Chart - Two Stage HP with Two Stage Standard ECM Furnace

If using a heat pump an external fossil fuel kit must be used, if heat pump doesn’t have Yorkguard VI control.
ACCESSORY CONNECTIONS
The furnace control will allow power-switching control of various accessories.

ELECTRONIC AIR CLEANER CONNECTION
Two 1/4" (6.4 mm) spade terminals (EAC-H and NEUTRAL) for electronic air cleaner connections are located on the control board. The terminals provide 115 VAC (1.0 amp maximum) during circulating blower operation.

HUMIDIFIER CONNECTION
Two 1/4" (6.4 mm) spade terminals (HUM and NEUTRAL) for humidifier connections are located on the control board. The terminals provide 115 VAC (1.0 amp maximum) during heating system operation.

A mounting hole is provided on the control panel next to the furnace control board for mounting a humidifier transformer if required.

SINGLE STAGE THERMOSTAT
If a single stage thermostat is used, the high/low input staging will be controlled by the furnace control board. Using the dipswitch settings the control provides multiple options for furnace staging. If the staging dipswitches are set to 10 or 20 position, the furnace will switch from low fire to high fire after 10 or 20 minutes and will stay in high fire until the thermostat is satisfied.

If the staging dipswitches are set to AUTO position, the furnace will automatically stage from low fire to high fire, using recent heating duty cycle information in an adaptive algorithm to determine the optimal time to energize 2nd stage operation.

If the staging dipswitches are set to OFF position and a single stage thermostat is used, the furnace will only operate at low fire.

SECTION VI: TWINNING
These furnaces are not to be twinned. If more than one furnace is needed in an application, each furnace must have its own complete duct system and its own wall thermostat.

SECTION VII: CONDENSATE PIPING AND FURNACE VENTING CONFIGURATION
CONDENSATE DRAIN LOCATION
As shipped from the factory:
- For all 040, 060, & 080K input furnaces the main drain is plumbed through the casing right-side opening when viewed from the front of the furnace.
- For all 100, 120, & 130K input furnaces the main drain is plumbed through the casing left-side opening when viewed from the front of the furnace.
- Condensate drain line may be routed to either side of the furnace in upflow or downflow configurations.

The condensate hoses must slope downwards at all points.

CAUTION
The furnace condensate pan is self priming and contains an internal trap to prevent flue gas leaking. Do not install an external condensate trap.

When drain hose routing changes are required (shown in Figures 21-24), be sure to cap all un-used openings.

If rerouting hoses - excess length should be cut off so that no sagging loops will collect and hold condensate - which will cause the furnace to not operate.

No hose clamps are needed for connecting to the condensate pan.

IMPORTANT
The furnace, indoor coil, and humidifier drains may be combined and drained together. The indoor coil drain may have an external, field-supplied trap prior to the furnace drain connection to prevent conditioned air leakage. All drain connections (furnace, indoor coil, or humidifier) must be terminated into an open or vented drain as close to the respective equipment as possible. Regular maintenance is required on condensate drainage system.

IMPORTANT
Condensate must be disposed of properly. Follow local plumbing or wastewater codes. The drain line must maintain a 1/4" per foot (20 mm/m) downward slope to the drain.

IMPORTANT
If an external vent tee is being installed, then it must have its own condensate trap before it is disposed into an open or vented drain. This is not to be considered as a second trap as referenced elsewhere in this document.

The Figures 21 - 24 show the condensate drain arrangement for the various possible furnace and vent blower positions.

The condensate will flow to the drain better if an open stand pipe is installed in the drain line. See Figure 20.

If indoor coil or humidifier drains are combined with the furnace drain, then the open stand pipe could be raised higher, above the 5" minimum.

Do not drain other devices (humidifier, indoor coil, etc.) into the top opening of the vent stand pipe. Instead, install a second tee in the vented drain tube below the furnace drain tee and route additional drainage through the new tee.
CONSENSATE DRAIN TERMINATION

A condensate sump pump MUST be used if required by local codes, or if no indoor floor drain is available. The condensate sump pump must be approved for use with acidic condensate.

NOTICE

A loop has been added to the pressure switch vacuum hose. However, ensure that all pressure switch hoses are routed such that they prevent any condensate from entering the pressure switch.

CAUTION

It is possible for condensation to form inside the combustion air (intake) pipe in the summer months if significant length of combustion air pipe passes through conditioned space. This problem can be averted by installing the supplied vent drain and drain hose located in the loose parts bag. The intake drain hose is to be installed by connecting it to the inlet pipe coupling and to the collector box as shown in Figures 21, 22, and 24. The drain hose must not sag or droop after it is installed. If glue is used when connecting the intake pipe to the intake coupling, the drain opening in the vent drain must not be plugged. If the intake drain is used, the bird screen cannot be installed. This is only approved for upflow and horizontal applications when the intake pipe is located on the top of the furnace. This is true for all long horizontal venting in any furnace configuration. This will keep condensate from entering the furnace.

WARNING

DO NOT terminate the condensate drain in a chimney, or where the drain line may freeze. If the drain line will be exposed to temperatures below freezing, adequate measures must be taken to prevent the drain line from freezing. Failure to provide proper protection from freezing can result in improper operation or damage to the equipment and possible property damage. When exposed to temperatures below freezing, use of a 3 to 6 watt per foot at 115 VAC, 40°F (4.4°C) self-regulating, shielded and waterproof heat tape is recommended on the drain line outside the furnace.

DO NOT trap the drain line at any location. The furnace has a condensate drain trap built into the drain pan.

WARNING

Liquid anti-freeze will cause damage to internal plastic parts of this furnace. DO NOT attempt to winterize the furnace using liquid anti-freeze.
When drain hose routing changes are required, be sure to cap all un-used openings. If rerouting hoses - excess length should be cut off so that no sagging loops will collect and hold condensate, which will cause the furnace to not operate.

For 040, 060 & 080K input furnaces, the condensate drain is plumbed toward the right casing outlet from the factory.

For 100 & 120 input furnaces, the condensate drain is plumbed toward the left casing outlet from the factory.

FIGURE 21: Upflow Configuration
When drain hose routing changes are required, be sure to cap all un-used openings. If rerouting hoses - excess length should be cut off so that no sagging loops will collect and hold condensate, which will cause the furnace to not operate.

1. Move rain gutter hose to this position.
2. Move pressure switch hose to this position. NOTE: May require the longer hose that is provided with wider cabinets.
3. Move rain gutter hose to this position.
4. Move condensate drain hose to this position (may exit either side of the cabinet).
When drain hose routing changes are required, be sure to cap all unused openings. If rerouting hoses - excess length should be cut off so that no sagging loops will collect and hold condensate, which will cause the furnace to not operate.

1. Move rain gutter hose to this position.
   NOTE: May require hose extension that is provided with wider cabinets.

2. Move pressure switch hose to this position.
   NOTE: May require the longer hose that is provided with wider cabinets.

3. Move rain gutter hose to this position.

4. Change condensate drain connection to the 90° fitting provided.

5. Change condensate drain connection to the 90° fitting provided.

When drain hose routing changes are required, be sure to cap all unused openings. If rerouting hoses, excess length should be cut off so that no sagging loops will collect and hold condensate, which will cause the furnace to not operate.
When drain hose routing changes are required, be sure to cap all un-used openings. If rerouting hoses - excess length should be cut off so that no sagging loops will collect and hold condensate, which will cause the furnace to not operate.

1. Move pressure switch hose to this position.
2. Change condensate drain connection to the 90° fitting provided.
3. Move condensate drain hose to this position.
4. Move rain gutter hose to this position.

HORIZONTAL - RIGHT INDUCER ROTATED
AIRFLOW
SECTION VIII: COMBUSTION AIR AND VENT SYSTEM

COMBUSTION AIR AND VENT SAFETY

This Category IV, dual certified direct vent furnace is designed for residential application. It may be installed without modification to the condensate system in a basement, garage, equipment room, attic, or any other indoor location where all required clearance to combustibles and other restrictions are met. The combustion air and the venting system must be installed in accordance with Section 5.3, Air for Combustion and Ventilation, of the National Fuel Gas Code Z223.1/NFPA 54 (latest edition), or Sections 7.2, 7.3 or 7.4 of CSA B149.1, National Gas and Propane Codes (latest edition) or applicable provisions of the local building code and these instructions.

**IMPORTANT**

The VENT SYSTEM must be installed as specified in these instructions for Residential and non-HUD Modular Homes. The direct vent system is the only configuration that can be installed in a non-HUD Modular Home.

**WARNING**

This furnace may not be common vented with any other appliance, since it requires separate, properly sized air intake and vent lines. The furnace shall not be connected to any type of B, BW or L vent or vent connector, and not connected to any portion of a factory-built or masonry chimney. The furnace shall not be connected to a chimney flue serving a separate appliance designed to burn solid fuel.

**CAUTION**

When combustion air pipe is installed above a suspended ceiling or when it passes through a warm and humid space, the pipe must be insulated with 1/2” Armaflex or other heat resistant type insulation if two feet or more of pipe is exposed. Vent piping must be insulated if it will be subjected to freezing temperatures such as routing through unheated areas or through an unused chimney.

COMBUSTION AIR/VENT PIPE SIZING

The size of pipe required will be determined by the furnace model, the total length of pipe required and the number of elbows required.

Table 8 lists the maximum equivalent length of pipe allowed for each model of furnace. The equivalent length of pipe for each elbow installed is listed in Table 11. The equivalent length of the vent system is the total length of straight pipe PLUS the equivalent length of all of the elbows.

The following rules must also be followed:

1. Drain, waste, and vent (DWV) elbows with a long radius (sweep) are recommended. Standard DWV elbows may be used, but since they have a longer equivalent length, they will reduce the total length of pipe that will be allowed. Short radius (plumbing or pressure) elbows are not allowed for venting. The standard dimensions of the acceptable elbows are shown in Figure 25 and Table 10.

2. The maximum equivalent length listed in Table 8 is for the vent piping and the air intake piping separately. For example, if the table allows 65 equivalent feet for a particular model, then the vent can have 65 equivalent feet of pipe, AND the combustion air intake can have another 65 equivalent feet of pipe.

3. Three vent terminal elbows (two for the vent and one for the combustion air intake) are already accounted for and need not be included in the equivalent length calculation.

4. All combustion air and vent pipe must conform to American National Standards Institute (ANSI) and American Society for Testing and Materials (ASTM) standards D1785 (Schedule 40 PVC), D2665 (PVC-DWV), F891 (PVC-DWV Cellular Core), D2261 (ABS-DWV) or F628 (Schedule 40 ABS). Pipe cement and primer must conform to ASTM Standard D2546 (PVC) or D2235 (ABS). If ABS pipe is to be used, any joint where ABS pipe is joined to PVC pipe must be glued with cement that is approved for use with BOTH materials. Metallic materials must not be used for venting or air intake.

5. If a flexible connector is used in the vent system, it must be made of a material that is resistant to acidic exposure and to at least 225°F (107.2°C) temperature. Flexible connectors are also allowed in the combustion air pipe.

6. All models are supplied with 2” (5.1 cm) vent connections. When the pipe must be increased to 3” (7.6 cm) diameter, the transition from 2” to 3” must be done as close to the furnace as possible. The 2” to 3” increase should be installed in the vertical position as to not create an area that will pool water.

7. In Canada, vents shall be certified to ULC S636, Standard for Type BH Gas Venting Systems.

8. In Canada, the first three feet (91.4 cm) of the vent must be readily accessible for inspection.

9. For single pipe systems it is recommended to install the combustion air coupling provided and install approximately 18” of PVC pipe on the furnace.

10. Minimum vent length for all models is 5 feet (1.5 m).

Table 8: Maximum Equivalent Pipe Length

<table>
<thead>
<tr>
<th>Elevation Sea level - 2000</th>
<th>Elevation 6001 - 7000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Input (BTUH)</td>
<td>Pipe Size (in)</td>
</tr>
<tr>
<td>40,000</td>
<td>2</td>
</tr>
<tr>
<td>40,000</td>
<td>3</td>
</tr>
<tr>
<td>60,000</td>
<td>2</td>
</tr>
<tr>
<td>60,000</td>
<td>3</td>
</tr>
<tr>
<td>60,000</td>
<td>4</td>
</tr>
<tr>
<td>80,000</td>
<td>2</td>
</tr>
<tr>
<td>80,000</td>
<td>3</td>
</tr>
<tr>
<td>80,000</td>
<td>4</td>
</tr>
<tr>
<td>100,000</td>
<td>2</td>
</tr>
<tr>
<td>100,000</td>
<td>3</td>
</tr>
<tr>
<td>100,000</td>
<td>4</td>
</tr>
<tr>
<td>120,000</td>
<td>3</td>
</tr>
<tr>
<td>120,000</td>
<td>4</td>
</tr>
</tbody>
</table>

(Continued on next page)
Table 8: Maximum Equivalent Pipe Length (Continued)

<table>
<thead>
<tr>
<th>Elevation 2001 - 4000</th>
<th>Model Input (BTUH)</th>
<th>Pipe Size (in)</th>
<th>Max. equivalent Length (ft)</th>
<th>Elevation 7001-8000</th>
<th>Model Input (BTUH)</th>
<th>Pipe Size (in)</th>
<th>Max. equivalent Length (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40,000</td>
<td>2</td>
<td>55</td>
<td>40,000</td>
<td>2</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40,000</td>
<td>3</td>
<td>80</td>
<td>40,000</td>
<td>3</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40,000</td>
<td>4</td>
<td>145</td>
<td>40,000</td>
<td>4</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60,000</td>
<td>2</td>
<td>55</td>
<td>60,000</td>
<td>2</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60,000</td>
<td>3</td>
<td>80</td>
<td>60,000</td>
<td>3</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60,000</td>
<td>4</td>
<td>145</td>
<td>60,000</td>
<td>4</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80,000</td>
<td>2</td>
<td>55</td>
<td>80,000</td>
<td>2</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80,000</td>
<td>3</td>
<td>80</td>
<td>80,000</td>
<td>3</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80,000</td>
<td>4</td>
<td>145</td>
<td>80,000</td>
<td>4</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100,000</td>
<td>2</td>
<td>20</td>
<td>100,000</td>
<td>2</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100,000</td>
<td>3</td>
<td>80</td>
<td>100,000</td>
<td>3</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100,000</td>
<td>4</td>
<td>145</td>
<td>100,000</td>
<td>4</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td></td>
<td>120,000</td>
<td>3</td>
<td>80</td>
<td>120,000</td>
<td>3</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>120,000</td>
<td>4</td>
<td>145</td>
<td>120,000</td>
<td>4</td>
<td>125</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elevation 4001 - 5000</th>
<th>Model Input (BTUH)</th>
<th>Pipe Size (in)</th>
<th>Max. equivalent Length (ft)</th>
<th>Elevation 8001-9000</th>
<th>Model Input (BTUH)</th>
<th>Pipe Size (in)</th>
<th>Max. equivalent Length (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40,000</td>
<td>2</td>
<td>50</td>
<td>40,000</td>
<td>2</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40,000</td>
<td>3</td>
<td>75</td>
<td>40,000</td>
<td>3</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40,000</td>
<td>4</td>
<td>140</td>
<td>40,000</td>
<td>4</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60,000</td>
<td>2</td>
<td>50</td>
<td>60,000</td>
<td>2</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60,000</td>
<td>3</td>
<td>75</td>
<td>60,000</td>
<td>3</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60,000</td>
<td>4</td>
<td>140</td>
<td>60,000</td>
<td>4</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80,000</td>
<td>2</td>
<td>50</td>
<td>80,000</td>
<td>2</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80,000</td>
<td>3</td>
<td>75</td>
<td>80,000</td>
<td>3</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80,000</td>
<td>4</td>
<td>140</td>
<td>80,000</td>
<td>4</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100,000</td>
<td>2</td>
<td>15</td>
<td>100,000</td>
<td>2</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100,000</td>
<td>3</td>
<td>75</td>
<td>100,000</td>
<td>3</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100,000</td>
<td>4</td>
<td>140</td>
<td>100,000</td>
<td>4</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td></td>
<td>120,000</td>
<td>3</td>
<td>75</td>
<td>120,000</td>
<td>3</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>120,000</td>
<td>4</td>
<td>140</td>
<td>120,000</td>
<td>4</td>
<td>120</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elevation 5001 - 6000</th>
<th>Model Input (BTUH)</th>
<th>Pipe Size (in)</th>
<th>Max. equivalent Length (ft)</th>
<th>Elevation 9001-10000</th>
<th>Model Input (BTUH)</th>
<th>Pipe Size (in)</th>
<th>Max. equivalent Length (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40,000</td>
<td>2</td>
<td>45</td>
<td>40,000</td>
<td>2</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40,000</td>
<td>3</td>
<td>70</td>
<td>40,000</td>
<td>3</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40,000</td>
<td>4</td>
<td>135</td>
<td>40,000</td>
<td>4</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60,000</td>
<td>2</td>
<td>45</td>
<td>60,000</td>
<td>2</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60,000</td>
<td>3</td>
<td>70</td>
<td>60,000</td>
<td>3</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60,000</td>
<td>4</td>
<td>135</td>
<td>60,000</td>
<td>4</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80,000</td>
<td>2</td>
<td>35</td>
<td>80,000</td>
<td>2</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80,000</td>
<td>3</td>
<td>70</td>
<td>80,000</td>
<td>3</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80,000</td>
<td>4</td>
<td>135</td>
<td>80,000</td>
<td>4</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100,000</td>
<td>2</td>
<td>10</td>
<td>100,000</td>
<td>2</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100,000</td>
<td>3</td>
<td>70</td>
<td>100,000</td>
<td>3</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100,000</td>
<td>4</td>
<td>135</td>
<td>100,000</td>
<td>4</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td></td>
<td>120,000</td>
<td>3</td>
<td>70</td>
<td>120,000</td>
<td>3</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>120,000</td>
<td>4</td>
<td>135</td>
<td>120,000</td>
<td>4</td>
<td>115</td>
<td></td>
</tr>
</tbody>
</table>

Table 9: High Altitude Pressure Switches

<table>
<thead>
<tr>
<th>High Altitude Pressure Switches required for all installations above 5000 Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part Number</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>S1-1PS3308</td>
</tr>
</tbody>
</table>
Example:
An 80,000 BTUH furnace requires 32 feet of pipe and five 90º elbows. Using 2" pipe and standard elbows, the total equivalent length will be:

\[
\begin{align*}
32 \text{ feet of } 2" \text{ pipe} &= 32 \text{ equivalent feet} \\
5 - 90º \text{ standard } 2" \text{ elbows} &= (5 \times 7) = 35 \text{ equivalent feet} \\
\text{Total} &= 67 \text{ equivalent feet of } 2" \text{ pipe}
\end{align*}
\]

This exceeds the 65 foot maximum equivalent length of 2" pipe allowed for that model and is thus not acceptable.

By using sweep elbows, the total equivalent length will be:

\[
\begin{align*}
32 \text{ feet of } 2" \text{ pipe} &= 32 \text{ equivalent feet} \\
5 - 90º \text{ sweep } 2" \text{ elbows} &= (5 \times 5) = 25 \text{ equivalent feet} \\
\text{Total} &= 57 \text{ equivalent feet of } 2" \text{ pipe}
\end{align*}
\]

This is less than the 65 foot maximum equivalent length of 2" pipe allowed for that model and is thus acceptable.

Alternatively, using 3" pipe and standard elbows, the total equivalent length will be:

\[
\begin{align*}
32 \text{ feet of } 3" \text{ pipe} &= 32 \text{ equivalent feet} \\
5 - 90º \text{ standard } 3" \text{ elbows} &= (5 \times 7) = 35 \text{ equivalent feet} \\
\text{Total} &= 67 \text{ equivalent feet of } 3" \text{ pipe}
\end{align*}
\]

This is less than the 90 foot maximum equivalent length of 3" pipe allowed for that model and is thus acceptable.
VNT CLEARANCES

FIGURE 26: Home Layout

+ VENT TERMINAL
+ AIR SUPPLY
- AREA WHERE TERMINAL IS NOT PERMITTED

<table>
<thead>
<tr>
<th>Direct Vent Terminal Clearances</th>
<th>Canadian Installations(^1,3)</th>
<th>US Installation(^2,3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Clearance above grade, veranda, porch, deck, or balcony</td>
<td>12&quot; (30.5 cm)</td>
<td>12&quot; (30.5 cm)</td>
</tr>
<tr>
<td>B. Clearance to window or door that may be opened</td>
<td>12&quot; (30.5 cm) for models ≤ 100,000 BTUH (30 kW), 36&quot; (91.4 cm) for models &gt; 100,000 BTUH (30 kW).</td>
<td>Two-pipe (direct vent) applications: 9&quot; (23 cm) for models ≤ 50,000 BTUH (15 kW), 12&quot; (30.5 cm) for models &gt; 50,000 BTUH (15 kW). †† Single-pipe applications: 4 feet (1.2 m).</td>
</tr>
<tr>
<td>C. Clearance to permanently closed window</td>
<td>12&quot; (30.5 cm)</td>
<td>12&quot; (30.5 cm)</td>
</tr>
<tr>
<td>D. Vertical clearance to ventilated soffit located above the terminal</td>
<td>12&quot; (30.5 cm) or in accordance with local installation codes and the requirements of the gas supplier.</td>
<td>12&quot; (30.5 cm) or in accordance with local installation codes and the requirements of the gas supplier.</td>
</tr>
<tr>
<td>E. Clearance to unventilated soffit</td>
<td>12&quot; (30.5 cm) or in accordance with local installation codes and the requirements of the gas supplier.</td>
<td>12&quot; (30.5 cm) or in accordance with local installation codes and the requirements of the gas supplier.</td>
</tr>
<tr>
<td>F. Clearance to outside corner</td>
<td>12&quot; (30.5 cm) or in accordance with local installation codes and the requirements of the gas supplier.</td>
<td>12&quot; (30.5 cm) or in accordance with local installation codes and the requirements of the gas supplier.</td>
</tr>
<tr>
<td>G. Clearance to inside corner</td>
<td>3 feet (91.4 cm)</td>
<td>3 feet (91.4 cm)</td>
</tr>
<tr>
<td>H. Clearance to each side of center line</td>
<td>Above a meter/regulator assembly within 3 feet (91.4 cm) horizontally of the vertical center-line of the regulator vent outlet to a maximum vertical distance of 15 feet (4.5 m) above the meter/regulator assembly.</td>
<td>Above a meter/regulator assembly within 3 feet (91.4 cm) horizontally of the vertical center-line of the regulator vent outlet to a maximum vertical distance of 15 feet (4.5 m) above the meter/regulator assembly.</td>
</tr>
<tr>
<td>I. Clearance to service regulator vent outlet</td>
<td>3 feet (91.4 cm)</td>
<td>3 feet (91.4 cm) or in accordance with local installation codes and the requirements of the gas supplier.</td>
</tr>
<tr>
<td>J. Clearance to nonmechanical air supply inlet to building or the combustion air inlet to any other appliance</td>
<td>12&quot; (30.5 cm) for models ≤ 100,000 BTUH (30 kW), 3 feet (91.4 cm) for models &gt; 100,000 BTUH (30 kW).</td>
<td>Two-pipe (direct vent) applications: 9&quot; (23 cm) for models ≤ 50,000 BTUH (15 kW), 12&quot; (30.5 cm) for models &gt; 50,000 BTUH (15 kW). †† Single-pipe applications: 4 feet (1.2 m).</td>
</tr>
<tr>
<td>K. Clearance to a mechanical supply inlet</td>
<td>6 feet (1.83 m)</td>
<td>3 feet (91.4 cm) above if within 10 feet (3 m) horizontally.</td>
</tr>
<tr>
<td>L. Clearance above paved sidewalk or paved driveway located on public property</td>
<td>7 feet (2.13 m)††</td>
<td>7 feet (2.13 m) or in accordance with local installation codes and the requirements of the gas supplier.</td>
</tr>
<tr>
<td>M. Clearance under veranda, porch, deck, or balcony</td>
<td>12&quot; (30.5 cm)‡‡</td>
<td>12&quot; (30.5 cm) or in accordance with local installation codes and the requirements of the gas supplier.</td>
</tr>
</tbody>
</table>

1. In accordance with the current CSA B149.1-00, Natural Gas and Propane Installation Code.
2. In accordance with the current ANSI Z223.1 / NFPA 54, National Gas Code.

† A vent shall not terminate directly above a sidewalk or paved driveway that is located between two single family dwellings and serves both dwellings.
†† 12" (30.5 cm) up from the bottom edge of the structure for Two-pipe (direct vent) applications per ANSI Z223.1 / NFPA 54, National Gas Code.
††† Permitted only if veranda, porch, deck, or balcony is fully open on a minimum of two sides beneath the floor and the distance between the top of the vent terminal and the underside of the veranda, porch, or deck is greater than 12” (30.5 cm) as specified in CSA B149.1-00.
†‡ Permitted only if veranda, porch, deck, or balcony is fully open on a minimum of two sides beneath the floor and the distance between the top of the vent terminal and the underside of the veranda, porch, or deck is greater than 12" (30.5 cm) as specified in CSA B149.1-00.

Any fresh air or make up inlet for dryer or furnace area is considered to be forced air inlet.
A vent shall extend high enough above building, or a neighboring obstruction, so that wind from any direction will not create a positive pressure in the vicinity of the vent.

### IMPORTANT

Consideration must be given for degradation of building materials by flue gases. Sidewall termination may require sealing or shielding of building surfaces with a corrosion resistant material to protect against combustion product corrosion. Consideration must be given to wind direction in order to prevent flue products and/or condensate from being blown against the building surfaces. If a metal shield is used it must be a stainless steel material at a minimum dimension of 20" (51 cm). It is recommended that a retaining type collar be used that is attached to the building surface to prevent movement of the vent pipe.
VENT SYSTEM
This furnace is certified to be installed with one of two possible vent configurations.
1. Horizontal vent system. This vent system can be installed completely horizontal or combinations of horizontal, vertical, or offset using elbows.
2. Vertical vent system. This vent system can be installed completely vertical or a combination of horizontal, vertical, or offset using elbows.

VENT APPLICATIONS AND TERMINATION
When selecting the location for a combustion air / vent termination, the following should be considered:
1. Observe all clearances listed in vent clearances in these instructions.
2. Termination should be positioned where vent vapors will not damage plants or shrubs or air conditioning equipment.
3. Termination should be located where it will not be affected by wind gusts, light snow, airborne leaves or allow recirculation of flue gases.
4. Termination should be located where it will not be damaged or exposed to flying stones, balls, etc.
5. Termination should be positioned where vent vapors are not objectionable.
6. Horizontal portions of the vent system must slope upwards and be supported to prevent sagging.
7. Direct vent systems must be installed so the vent and the combustion air pipes terminate in the same atmospheric zone. Refer to Figures 28 or 29.

VENTING MULTIPLE UNITS
Multiple units can be installed in a space or structure as either a single pipe configuration or a two-pipe configuration.

The combustion air side of the single pipe configuration shown in Figure 34 is referred to in these instructions as ambient combustion air supply. Follow the instructions for ambient combustion air installations, paying particular attention to the section on air source from inside the building. The vent for a single pipe system must be installed as specified in the venting section of these instructions with both vents terminating as shown in Figure 27. Each furnace must have a separate vent pipe. Under NO circumstances can the two vent pipes be tied together.

The combustion air and vent pipes must terminate in the same atmospheric zone.

\[ \text{FIGURE 27: Termination Configuration - 1 Pipe} \]

\[ \text{FIGURE 28: Termination Configuration - 2 Pipe} \]

\[ \text{FIGURE 29: Termination Configuration - 2 Pipe Basement} \]
**DOWNWARD VENTING**

In some applications, it may be necessary to run the vent pipe and air intake downwards. If this is to be done, the following rules must be followed.

- A condensate trap hose must be connected to both the air intake pipe and the vent pipe at the lowest part of the horizontal run.
- The condensate drain trap must have a trap of a minimum of six inches.
- The total vertical downward distance must not exceed sixteen feet.
- The condensate drain hose must be connected to a condensate drain pump, a open or vented drain or into the condensate drain line from the furnace.
- The condensate drain lines must not pass through unconditioned spaces where the temperature may fall below freezing.
- The condensate drain line must be primed at the initial start-up prior to the start of heating season.

**COMBUSTION AIR SUPPLY**

All installations must comply with Section 5.3, Air for Combustion and Ventilation of the National Fuel Gas Code, ANSI Z223.1 or Sections 7.2, 7.3 or 7.4 of CAN/CGA B149.1 or B149.2 Installation Code - latest editions.

This furnace is certified to be installed with one of three possible combustion air intake configurations.

1. **OUTDOOR COMBUSTION AIR:** This is a direct vent configuration where the combustion air is supplied through a PVC or ABS pipe that is connected to the PVC coupling attached to the furnace and is terminated in the same atmospheric zone as the vent. This type of installation is approved on all models. Refer to Figure 33.

2. **AMBIENT COMBUSTION AIR:** Combustion air is supplied from the area surrounding the furnace through openings in the furnace casing. The combustion air and the vent pipes are not terminated in the same atmospheric zone. Refer to Figure 27 for vent terminations. Refer to “Ambient Combustion air Supply” for proper installation. Refer to Figures 33 and 34.

3. **VENTILATED COMBUSTION AIR:** Combustion air is supplied through a PVC or ABS pipe that is connected to the PVC coupling attached to the burner box and is terminated in a ventilated attic or crawl space. The combustion air and the vent pipes are not terminated in the same atmospheric zone. Refer to Figure 36 for attic and crawl space termination. Only the combustion air intake may terminate in the attic. The vent must terminate outside.

**Outdoor Combustion Air**

Combustion Air Intake/Vent Connections

This installation requires combustion air to be brought in from outdoors. This requires a properly sized pipe (Shown in Figure 32) that will bring air in from the outdoors to the furnace combustion air intake collar on the burner box. The second pipe (Shown in Figure 33) is the furnace vent pipe.

**NOTICE**

An optional plastic birdscreen is shipped in the loose parts bag with every furnace. This may be installed in the intake collar to prevent any small objects from entering the furnace.

**FIGURE 30:** Double Horizontal Combustion Air Intake and Vent Termination

**FIGURE 31:** Double Vertical Combustion Air Intake and Vent Termination

**FIGURE 32:** Downward Venting

**FIGURE 33:** Direct Vent Air Intake Connection and Vent Connection

The combustion air intake pipe should be located either through the wall (horizontal or side vent) or through the roof (vertical vent). Care should be taken to locate side vented systems where trees or shrubs will not block or restrict supply air from entering the terminal.

Also, the terminal assembly should be located as far as possible from a swimming pool or a location where swimming pool chemicals might be stored. Be sure the terminal assembly follows the outdoor clearances listed in Section #1 “Outdoor Air Contaminants.”
Ambient Combustion Air Supply

This type installation will draw the air required for combustion from within the space surrounding the appliance and from areas or rooms adjacent to the space surrounding the appliance. This may be from within the space in a non-confined location or it may be brought into the furnace area from outdoors through permanent openings or ducts. It is not piped directly into the furnace. A single, properly sized pipe from the furnace vent connector to the outdoors must be provided. It is recommended that the supplied intake coupling and 18" (46 cm) of pipe be attached to the furnace to prevent accidental blockage of the combustion air intake.

A **unconfined space** is not less than 50 cu.ft (1.42 m³) per 1,000 Btu/hr (0.2928 kW) input rating for all of the appliances installed in that area.

Rooms communicating directly with the space containing the appliances are considered part of the unconfined space, if doors are furnished with openings or louvers.

A **confined space** is an area with less than 50 cu.ft (1.42 m³) per 1,000 Btu/hr (0.2928 kW) input rating for all of the appliances installed in that area. The following must be considered to obtain proper air for combustion and ventilation in confined spaces.

**Combustion Air Source From Outdoors**

The blocking effects of louvers, grilles and screens must be given consideration in calculating free area. If the free area of a specific louver or grille is not known, refer to Table 13, to estimate free area.

---

**Table 13: Estimated Free Area**

<table>
<thead>
<tr>
<th>Wood or Metal Louvers or Grilles</th>
<th>Wood 20-25%* Metal 60-70%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screens+</td>
<td>1/4&quot; (6.4 mm) mesh or larger 100%</td>
</tr>
</tbody>
</table>

* Do not use less than 1/4" (6.4 mm) mesh
+ Free area of louvers and grille varies widely; the installer should follow louver or grille manufacturer’s instructions.

**Dampers, Louvers and Grilles (Canada Only)**

1. The free area of a supply air opening shall be calculated by subtracting the blockage area of all fixed louvers grilles or screens from the gross area of the opening.
2. Apertures in a fixed louver, a grille, or screen shall have no dimension smaller than 1/4" (6.4 mm).
3. A manually operated damper or manually adjustable louvers are not permitted for use.
4. A automatically operated damper or automatically adjustable louvers shall be interlocked so that the main burner cannot operate unless either the damper or the louver is in the fully open position.

---

**Table 14: Unconfined Space Minimum Area**

<table>
<thead>
<tr>
<th>BTUH Input Rating</th>
<th>Minimum Free Area Required for Each Opening</th>
</tr>
</thead>
<tbody>
<tr>
<td>40,000</td>
<td>40 in² (258 cm²)</td>
</tr>
<tr>
<td>60,000</td>
<td>60 in² (387 cm²)</td>
</tr>
<tr>
<td>80,000</td>
<td>80 in² (516 cm²)</td>
</tr>
<tr>
<td>100,000</td>
<td>100 in² (645 cm²)</td>
</tr>
<tr>
<td>120,000</td>
<td>120 in² (742 cm²)</td>
</tr>
</tbody>
</table>

---

**Table 15: Free Area**

<table>
<thead>
<tr>
<th>BTUH Input Rating</th>
<th>Minimum Free Area Required for Each Opening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal Duct (2,000 BTUH)</td>
<td>Vertical Duct or Opening to Outside (4,000 BTUH)</td>
</tr>
<tr>
<td>40,000</td>
<td>20 in² (129 cm²)</td>
</tr>
<tr>
<td>60,000</td>
<td>30 in² (193 cm²)</td>
</tr>
<tr>
<td>80,000</td>
<td>40 in² (258 cm²)</td>
</tr>
<tr>
<td>100,000</td>
<td>50 in² (322 cm²)</td>
</tr>
<tr>
<td>120,000</td>
<td>60 in² (387 cm²)</td>
</tr>
</tbody>
</table>

**EXAMPLE: Determining Free Area.**

Appliance 1 Appliance 2 Total Input

100,000 +30,000 = (130,000 ÷ 4,000) = 32.5 Sq. In. Vertical Appliance 1 Appliance 2 Total Input

100,000 +30,000 = (130,000 ÷ 2,000) = 65 Sq. In. Horizontal
Air Supply Openings and Ducts

1. An opening may be used in lieu of a duct to provide the outside air supply to an appliance unless otherwise permitted by the authority having jurisdiction. The opening shall be located within 12" (30.5 cm) horizontally from, the burner level of the appliance. Refer to "AIR SOURCE FROM OUTDOORS AND VENT AND SUPPLY AIR SAFETY CHECK" in these instructions for additional information and safety check procedure.

2. The duct shall be either metal, or a material meeting the class 1 requirements of CAN4-S110 Standard for Air Ducts.

3. The duct shall be least the same cross-sectional area as the free area of the air supply inlet opening to which it connects.

4. The duct shall terminate within 12" (30.5 cm) above, and within 24" (61 cm) horizontally from, the burner level of the appliance having the largest input.

5. A square or rectangular shaped duct shall only be used when the required free area of the supply opening is 9 in² (58.06 cm²) or larger. When a square or rectangular duct is used, its small dimension shall not be less than 3" (7.6 cm).

6. An air inlet supply from outdoors shall be equipped with a means to prevent the direct entry of rain and wind. Such means shall not reduce the required free area of the air supply opening.

7. A ventilated attic space or a crawl space from which the combustion air is taken must comply with the requirements specified in "AIR SOURCE FROM OUTDOORS" in this instruction or in Section 5.3, Air for Combustion and Ventilation of the National Fuel Gas Code, ANSI Z223.1 (latest edition). This type installation requires two properly sized pipes. One brings combustion air from a properly ventilated attic space or crawl space and a second pipe that extends from the furnace vent connection (top right of unit) to the exterior of the building. Refer to Table 8 for intake pipe sizing, allowable length and elbow usage. Follow all notes, procedures and required materials in the "COMBUSTION AIR/VENT PIPE SIZING" section in these instructions when installing the combustion air pipe from the unit and into a ventilated attic space or crawl space. DO NOT terminate vent pipe in an Attic or Crawl Space.

Ventilated Combustion Air Termination

Refer to Figure 36 for required attic termination for the combustion air intake pipe. For attic termination, use two 90° elbows with the open end in a downward position. Be sure to maintain 12" (30.5 cm) clearance above any insulation, flooring or other material.

A crawl space combustion air installation consists of a straight pipe from the PVC coupling on the burner box that extends into the crawl space and terminates with a 1/4" (6.4 mm) mesh screen and no elbows.
**WARNING**

**CARBON MONOXIDE POISONING HAZARD**

Failure to follow the steps outlined below for each appliance connected to the venting system being placed into operation could result in carbon-monoxide poisoning or death.

The following steps shall be followed for each appliance connected to the venting system being placed into operation, while all other appliances connected to the venting system are not in operation:

1. Inspect the venting system for proper size and horizontal pitch. Determine that there is no blockage, restriction, leakage, corrosion or other deficiencies, which could cause an unsafe condition.
2. Close all building doors and windows.
3. Turn on clothes dryers and TURN ON any exhaust fans, such as range hoods and bathroom exhausts, so they shall operate at maximum speed. Open the fireplace dampers. Do not operate a summer exhaust fan.
4. Follow the lighting instructions. Place the appliance being inspected in operation. Adjust thermostat so the appliance shall operate continuously.
5. Test each appliance (such as a water heater) equipped with a draft hood for spillage (down-draft or no draft) at the draft hood relief opening after 5 minutes of main burner operation. Appliances that do not have draft hoods need to be checked at the vent pipe as close to the appliance as possible. Use a combustion analyzer to check the CO2 and CO levels of each appliance. Use a draft gauge to check for a downdraft or inadequate draft condition.
6. After it has been determined that each appliance properly vents when tested as outlined above, return doors, windows, exhaust fans, fireplace dampers and any other gas burning appliance to their normal condition.
7. If improper venting is observed during any of the above tests, a problem exists with either the venting system or the appliance does not have enough combustion air (Supply Air from outside) to complete combustion. This condition must be corrected before the appliance can function safely.

**NOTE:** A unsafe condition exists when the CO reading exceeds 40 ppm and the draft reading is not in excess of - 0.1 in. w.c. (-25 kPa) with all of the appliance(s) operating at the same time.

8. Any corrections to the venting system and / or to the supply (outside) air system must be in accordance with the National Fuel Gas Code Z223.1 or CAN/CGA B149.1 Natural Gas and Propane Installation Code (latest editions). If the vent system must be resized, follow the appropriate tables in Appendix G of the above codes or for this appliance.

---

**SECTION IX: START-UP AND ADJUSTMENTS**

The initial start-up of the furnace requires the following additional procedures:

**IMPORTANT**

All electrical connections made in the field and in the factory should be checked for proper tightness.

When the gas supply is initially connected to the furnace, the gas piping may be full of air. In order to purge this air, it is recommended that the ground union be loosened until the odor of gas is detected. When gas is detected, immediately retighten the union and check for leaks. Allow five minutes for any gas to dissipate before continuing with the start-up procedure. Be sure proper ventilation is available to dilute and carry away any vented gas.

**GAS PIPING LEAK CHECK**

**WARNING**

**FIRE OR EXPLOSION HAZARD**

Failure to follow the safety warnings exactly could result in serious injury, death or property damage. Never test for gas leaks with an open flame. Use a commercially available soap solution made specifically for the detection of leaks to check all connections. A fire or explosion may result causing property damage, personal injury or loss of life.

**IMPORTANT**

Burner ignition may not be satisfactory on first startup due to residual air in the gas line or until gas manifold pressure is adjusted. The ignition control will make three attempts to light before locking out.

---

**VENT BLOWER ROTATION**

For ease of venting, the vent blower may be rotated 90° in either direction. For upflow installations the vent may exit through the top or either side of the cabinet. For downflow installations, the vent blower must be rotated so that the vent exits through either side of the cabinet. See Figures 21-24 for illustrations of different inducer rotation positions.
It is recommended that when the gas supply is first connected to the furnace, the ground union be loosened until the odor of gas is detected. When gas is detected, immediately tighten the union and check for gas leaks. Allow five minutes for any gas to dissipate before continuing with the startup procedure. Be sure that proper ventilation is available to dilute and carry away any vented gas.

With furnace in operation, check all of the pipe joints, gas valve connections and manual valve connections for leakage using an approved gas detector, a non-corrosive leak detection fluid or other leak detection methods. Take appropriate action to stop any leak. If a leak persists, replace the faulty component.

The furnace and its equipment shutoff valve must be disconnected from the gas supply during any pressure testing of that system at test pressures in excess of 0.5 psig (3.45 kPa).

The furnace must be isolated from the gas supply piping system by closing the equipment shutoff valve during any pressure testing of the gas supply system.

IGNITION SYSTEM SEQUENCE
1. Turn the gas supply ON at external valve and main gas valve.
2. Set the thermostat above room temperature to call for heat.
3. System start-up will occur as follows:
   a. The induced draft blower motor will start and come up to speed. Shortly after inducer start-up, the hot surface igniter will glow for about 17 seconds.
   b. After this warm up, the ignition module will energize (open) the main gas valve.
   c. After flame is established, the supply air blower will start in about 30 seconds.

CALCULATING THE FURNACE INPUT (NAT. GAS)
Burner orifices are sized to provide proper input rate using natural gas with a heating value of 1030 BTU/Ft³ (38.4 MJ/m³). If the heating value of your gas is significantly different, it may be necessary to replace the orifices.

NOTICE

DO NOT set manifold pressure less than 3.2” w.c. or more than 3.8” w.c. for natural gas at sea level. If manifold pressure is outside this range, change main burner orifices.

NOTICE

If orifice hole appears damaged or it is suspected to have been redrilled, check orifice hole with a numbered drill bit of correct size. Never redrill an orifice. A burr-free and squarely aligned orifice hole is essential for proper flame characteristics.

CAUTION

DO NOT bottom out gas valve regulator adjusting screw. This can result in unregulated manifold pressure and result in excess overfire and heat exchanger failures.

Verify natural gas input rate by clocking meter.
1. Turn off all other gas appliances and pilots.
2. Run furnace for a minimum of 3 minutes in heating operation.
3. Measure time (in sec) for gas meter to complete 1 revolution and note reading. The 2 cubic feet dial provides a more accurate measurement of gas flow.
4. Refer to Table 16 for cubic feet of gas per hour.
5. Multiply cubic feet per hour by heating valve (BTU/cu ft) to obtain input.

If clocked rate does not match the input rate from the unit nameplate, follow steps in next section to adjust the manifold pressure. Repeat steps 2 - 5 until correct input is achieved.

WARNING

HOT SURFACE IGNITION SYSTEM
Do not attempt to light this furnace by hand (with a match or any other means). There may be a potential shock hazard from the components of the hot surface ignition system. The furnace can only be lit automatically by its hot surface ignition system.

WARNING

Do not attempt to light this furnace by hand (with a match or any other means). There may be a potential shock hazard from the components of the hot surface ignition system. The furnace can only be lit automatically by its hot surface ignition system.

CAUTION

Be sure to relight any gas appliances that were turned off at the start of this input check.
ADJUSTMENT OF MANIFOLD GAS PRESSURE & INPUT RATE

Inlet and manifold gas pressure may be measured by connecting the "U" tube manometer to the gas valve with a piece of tubing. Follow the appropriate section in the instructions below. Refer to Figure 37 for the locations of the pressure ports on the gas valve.

Turn gas off at the ball valve or gas cock on gas supply line before the gas valve. Find the pressure ports on the gas valve marked Out P and In P.

1. The manifold pressure must be taken at the port marked OUT P.
2. The gas line pressure must be taken at the port marked IN P.
3. Using a 3/32" (2.4 mm) hex head wrench, loosen the set screw by turning it 1 turn counter clockwise. DO NOT REMOVE THE SET SCREW FROM THE PRESSURE PORT.

Read the inlet gas pressure
Connect the positive side of the manometer to the IN P Tap on the gas valve. Do not connect any tubing to the negative side of the manometer, as it will reference atmospheric pressure. Refer to Figure 38 for connection details.

1. Turn gas and electrical supplies on and follow the operating instructions to place the unit back in operation.

Table 16: Gas Rate (CU FT/HR) at Full Input

<table>
<thead>
<tr>
<th>Size of Test Dial</th>
<th>Seconds For 1 Revolution</th>
<th>1 Cu Ft</th>
<th>2 Cu Ft</th>
<th>5 Cu Ft</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31</td>
<td>32</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>34</td>
<td>35</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>37</td>
<td>38</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
<td>41</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>43</td>
<td>44</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>46</td>
<td>47</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td></td>
<td>49</td>
<td>50</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>52</td>
<td>53</td>
<td>54</td>
</tr>
</tbody>
</table>

Table 17: Inlet Gas Pressure Range

<table>
<thead>
<tr>
<th>INLET GAS PRESSURE RANGE</th>
<th>Natural Gas</th>
<th>Propane (LP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>4.5&quot; w.c. (1.12 kPa)</td>
<td>8.0&quot; w.c. (1.99 kPa)</td>
</tr>
<tr>
<td>Maximum</td>
<td>10.5&quot; w.c. (2.61 kPa)</td>
<td>13.0&quot; w.c. (3.24 kPa)</td>
</tr>
</tbody>
</table>
2. Once the correct gas inlet pressure has been established, see Table 17, turn the gas valve to OFF and turn the electrical supply switch to OFF; then remove the flexible tubing from the gas valve pressure tap and tighten the pressure tap plug using the 3/32" (2.4 mm) hex head wrench.

3. Turn the electrical and gas supplies back on, and with the burners in operation, check for gas leakage around the gas valve pressure port for leakage using an approved non-corrosive gas leak detection fluid, or other non-flammable leak detection methods.

Read the manifold gas pressure

Connect the positive side of the manometer to the OUT P Tap on the gas valve. Do not connect any tubing to the negative side of the manometer, as it will reference atmospheric pressure. Refer to Figures 37 and 38 for connection details.

This gas valve has separate regulator adjustment screws for high fire and low fire, as shown in Figure 37. The procedure below is used to adjust either the high fire manifold pressure or the low fire manifold pressure.

4. After the manifold pressure has been adjusted, re-calculate the furnace input to make sure you have not exceeded the specified input on the rating plate. Refer to “CALCULATING THE FURNACE INPUT (NATURAL GAS)”. If gas valve regulator is turned in (clockwise), manifold pressure is increased. If screw is turned out (counterclockwise), manifold pressure will decrease.

5. Once the correct BTU (kW) input has been established, turn the gas valve to OFF and turn the electrical supply switch to OFF; then remove the flexible tubing from the gas valve pressure tap and tighten the pressure tap plug using the 3/32" (2.4 mm) hex head wrench.

6. Turn the electrical and gas supplies back on, and with the burners in operation, check for gas leakage around the gas valve pressure port for leakage using an approved non-corrosive gas leak detection fluid, or other non-flammable leak detection methods.

### Table 18: Nominal Manifold Pressure

<table>
<thead>
<tr>
<th>NOMINAL MANIFOLD PRESSURE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Gas (High Fire)</td>
<td>3.5” w.c. (0.87 kPa)</td>
</tr>
<tr>
<td>Natural Gas (Low Fire)</td>
<td>1.6” w.c. (0.40 kPa)</td>
</tr>
<tr>
<td>Propane (LP) Gas (High Fire)</td>
<td>9.8” w.c. (2.488 kPa)</td>
</tr>
<tr>
<td>Propane (LP) Gas (Low Fire)</td>
<td>4.0” w.c. (0.99 kPa)</td>
</tr>
</tbody>
</table>

---

**Important**

The inlet gas pressure operating range table specifies what the minimum and maximum gas line pressures must be for the furnace to operate safely. The gas line pressure **MUST BE** a minimum of:

- 7” w.c. (1.74 kPa) for Natural Gas
- 11” w.c. (2.74 kPa) for Propane (LP) Gas

in order to obtain the BTU input specified on the rating plate and/or the nominal manifold pressure specified in these instructions and on the rating plate.

**Important**

The cap for the pressure regulator must be removed entirely to gain access to the adjustment screw. Loosening or tightening the cap does not adjust the flow of gas.

**Notice**

The regulated outlet pressure has been calibrated at the factory. Additional pressure adjustment should not be necessary. If adjustment is necessary, set to the following specifications. After adjustment, check for gas leakage.

This gas valve has separate regulator adjustment screws for high fire and low fire, as shown in Figure 37. The procedure below is used to adjust either the high fire manifold pressure or the low fire manifold pressure.

**Notice**

Gas manifold pressure must be set on high fire before adjusting low fire pressure.

1. Refer to Figure 37 for location of pressure regulator adjustment cap and adjustment screws on main gas valve.
2. Turn gas and electrical supplies on and follow the operating instructions to place the unit back in operation.
3. Place jumper wire from W1 to W2 to R on the furnace control board for the furnace to operate HIGH fire. Once correct manifold pressure is set (HI), remove jumper from W2 for the furnace to operate on low fire. Set the manifold pressure (LO) to correct manifold pressure.

---

**Important**

If gas valve regulator is turned in (clockwise), manifold pressure is increased. If screw is turned out (counterclockwise), manifold pressure will decrease.
ADJUSTMENT OF TEMPERATURE RISE

**DANGER**

The temperature rise, or temperature difference between the return air and the supply (heated) air from the furnace, must be within the range shown on the furnace rating plate and within the application limitations shown in Table 7 “RATINGS & PHYSICAL / ELECTRICAL DATA”.

The supply air temperature cannot exceed the “Maximum Supply Air Temperature” specified in these instructions and on the furnace rating plate. Under NO circumstances can the furnace be allowed to operate above the Maximum Supply Air Temperature. Operating the furnace above the Maximum Supply Air Temperature will cause premature heat exchanger failure, high levels of Carbon Monoxide, a fire hazard, personal injury, property damage, and/or death.

After about 5 minutes of operation, determine the furnace temperature rise. Take readings of both the return air and the heated air in the ducts, about six feet (1.83 m) from the furnace where they will not be affected by radiant heat. Increase the blower speed to decrease the temperature rise; decrease the blower speed to increase the rise. See furnace rating plate for minimum or maximum temperature rise, and adjust blower speed accordingly.

ADJUSTMENT OF FAN CONTROL SETTINGS

Heating Indoor Fan Off Delay

This furnace is equipped with a time-on/time-off heating fan control. The fan on delay is fixed at 30 seconds. The fan off delay has 4 settings (60, 90, 120 and 180 seconds). The fan off delay is factory set to 120 seconds. The fan-off setting must be long enough to adequately cool the furnace, but not so long that cold air is blown into the heated space. The BLOWER OFF DELAY timing may be adjusted by positioning the dipswitches shown in Figure 40.

This furnace is equipped with a standard ECM motor. Blower motor speed taps are located on the furnace control board in the blower compartment.

EXTERNAL STATIC PRESSURE SETUP

To measure external static pressure:

- Measure the supply air static pressure
- Record this positive number
- Measure the return air static pressure
- Record this negative number
- Treat the negative number as a positive and add the two numbers together
- This is total system static

Refer to Figure 40 and the unit wiring diagram label to change blower speed. Place all unused motor leads on the PARK terminal. One park terminal is provided. To use same speed tap for heating and cooling, the terminals must be jumped together at the furnace control board using a field supplied jumper. This control has a continuous fan speed dipswitch. On a fan call only (G), the control will energize which ever blower tap is selected by dipswitches. This control will change other blower speeds on 24V thermostat inputs (Y1, YY2, W, W2).
NOTES:
1. Airflow expressed in standard cubic feet per minute (SCFM).
2. Motor voltage at 115 V.

SECTION X: SAFETY CONTROLS

CONTROL CIRCUIT FUSE

A 3-amp fuse is provided on the control circuit board to protect the 24-volt transformer from overload caused by control circuit wiring errors. This is an ATO 3, automotive type fuse and is located on the control board.

BLOWER DOOR SAFETY SWITCH

This unit is equipped with an electrical interlock switch mounted in the burner compartment. This switch interrupts all power at the unit when the panel covering the blower compartment is removed.

ROLLOUT SWITCH CONTROLS

These controls are mounted on the burner assembly. If the temperature in the area surrounding burner exceeds its set point, the gas valve is de-energized. The operation of this control indicates a malfunction in the combustion air blower, heat exchanger or a blocked vent pipe connection. Corrective action is required. These are manual reset controls that must be reset before operation can continue.

PRESSURE SWITCHES

This furnace is supplied with three pressure switches, which monitor the flow through the combustion air/vent piping and condensate drain system. These switches de-energize the gas valve if any of the following conditions are present. Refer to "CONDENSATE PIPING AND FURNACE VENTING CONFIGURATION" for tubing connections.

1. Blockage of combustion air piping or terminals.
2. Blockage of condensate drain piping.
3. Blockage of vent piping or terminal.
4. Failure of combustion air blower motor.
LIMIT CONTROLS
There is a high temperature limit control located on the furnace vestibule panel near the gas valve. This is an automatic reset control that provides over temperature protection due to reduced airflow. This may be caused by:
1. A dirty filter.
2. If the indoor fan motor should fail.
3. Too many supply or return registers closed or blocked off.
4. Improperly sized duct system.
The control module will lockout if the limit trips 5 consecutive times. If this occurs, control will reset & try ignition again after 1 hour.

SECTION XI: NORMAL OPERATION AND DIAGNOSTICS
NORMAL OPERATION SEQUENCE
The following describes the sequence of operation of the furnace. Refer to Owners Manual for component location.
Continuous Blower
Cooling/heating thermostats have a fan switch that has an ON and AUTO position. In the ON position the thermostat circuit is completed between terminals R and G. The motor will operate continuously on the speed tap that is selected through dipswitches on the furnace control board. To obtain a different constant air circulation change dipswitches to assign another speed tap.
Intermittent Blower - Cooling
Cooling/heating thermostats have a fan switch that has an ON and AUTO position. In the AUTO position the thermostat circuit is completed between terminals R and W when there is a call for cooling. The motor will operate on the speed tap that is connected to the Hi COOL or LO COOL cooling terminal on the control board depending on 24V thermostat input on Y1 or Y/Y2. The fan off setting is fixed at 60 seconds to improve cooling efficiency.
Heating Cycle
When the thermostat switch is set on HEAT and the fan is set on AUTO, and there is a call for heat, a circuit is completed between terminals R and W of the thermostat. When the proper amount of combustion air is being provided, the pressure switch will close, the ignition control provides a 17-second ignitor warm-up period, the gas valve then opens, the gas starts to flow, ignition occurs and the flame sensor begins its sensing function. The furnace fires on high fire for 10 seconds, then it switches to low fire unless there is a heating call present on W2. The blower motor energizes 30 seconds after the gas valve opens if a flame is detected. Normal furnace operation continues until the thermostat circuit between R and W is opened, which causes the ignition system and gas valve to de-energize and the burner flames to be extinguished. The vent motor operates for 15 seconds, and the blower motor operates for the amount of time set by the fan-off delay dip switches located on the control board. See Figure 40. The heating cycle is now complete and ready for the start of the next heating cycle.
If the flame is not detected within 7 seconds of the gas valve opening, the gas valve is shut off and a retry operation begins. During a retry operation, the vent motor starts a 15 second inter-purge and the ignitor warm-up time is extended to 27 seconds. If the flame is established for more than 10 seconds after ignition during a retry, the control will clear the ignition attempt (retry) counter. If three retries occur during a call for heat, the furnace will shut down for one hour. If at the end of the one hour shut down there is a call for heat, the furnace will initiate a normal start cycle. If the problem has not been corrected the furnace will again lockout after three retries.
A momentary loss of gas supply, flame blowout, or a faulty flame probe circuit will result in a disruption in the flame and be sensed within 1.0 seconds. The gas valve will de-energize and the control will begin a recycle operation. A normal ignition sequence will begin after a 15 second inter-purge. If during the five recycles the gas supply does not return, or the fault condition is not corrected the ignition control will lockout for 60 minutes.
During burner operation, a momentary loss of power for 50 milliseconds or longer will de-energize the gas valve. When the power is restored, the gas valve will remain de-energized and the ignition sequence will immediately restart.

TROUBLESHOOTING
The following visual checks should be made before troubleshooting:
1. Check to see that the power to the furnace and the ignition control module is ON.
2. The manual shut-off valves in the gas line to the furnace must be open.
3. Make sure all wiring connections are secure.
4. Review the sequence of operation. Start the system by setting the thermostat above the room temperature. Observe the system’s response. Then use the troubleshooting section in this manual to check the system’s operation.

FURNACE CONTROL DIAGNOSTICS
The furnace has built-in, self-diagnostic capability. A blinking LED light on the control board can flash red, green or amber to indicate various conditions. The control continuously monitors its own operation and the operation of the system. If a failure occurs, the LED light will indicate the failure code.
The SLOW flash speed is two seconds on and two seconds off. The other flash codes listed below have the following timing: LED light will turn on for 1/3 second and off for 1/3 second. This pattern will be repeated the number of times equal to the code. There will be a two-second pause between codes. For example, the six red flash code will flash the LED light on and off six times, then will be off for two seconds. This pattern will repeat as long as the fault condition remains.
SLOW AMBER FLASH: Normal operation with call for heat.
SLOW GREEN FLASH: Normal operation, no thermostat calls.
SLOW RED FLASH: Possible control failure. Remove and check the control voltage fuse. An open fuse will result in a steady on red LED. Turn power to the furnace off and back on. If the fault code returns, the control board must be replaced. The control board is not field-repairable.
CONTINUOUS AMBER FLASH: Flame sensor current is below 0.35 micro amps. Check and clean flame sensor. Check for proper gas flow. Verify that current is greater than 0.35 micro amp at the flame current test pad.
1 RED FLASH: This indicates that flame was sensed when there was no call for heat. The control will turn on both the inducer motor and supply air blower. Check for a leaking or slow-closing gas valve.
2 RED FLASHES: This indicates that the pressure switch is closed when it should be open. The control confirms that the pressure switch contacts are open at the beginning of each heat cycle and will not let the ignition sequence continue if the pressure switch contacts are closed when they should be open. Check for a faulty pressure switch or miswiring.

WARNING
Never bypass any safety control to allow furnace operation. To do so will allow furnace to operate under potentially hazardous conditions.
Do not try to repair controls. Replace defective controls with UPG Source 1 Parts.
Never adjust pressure switch to allow furnace operation.
**3 RED FLASHES:** This indicates the pressure switch contacts are open when they should be closed. Check for faulty inducer, blocked vent pipe, broken pressure switch hose, disconnected pressure switch or inducer wires or faulty pressure switch.

**4 RED FLASHES:** This indicates that the main limit switch has opened its normally closed contacts. The control will operate the supply air blower and inducer while the open limit condition exists. Check for a dirty filter, improperly sized duct system, incorrect blower speed setting, incorrect firing rate, loose limit switch wiring or faulty blower motor.

If the limit switch has not closed within five minutes, the control will assume that the blower is not functioning, will start a hard lockout and will begin to flash the 11 Red Flashes error code. Power will have to be cycled off and on to reset the control after the problem has been corrected. See “11 Red Flashs” description below.

If the main limit switch opens five times within a single call for heat, the control will also indicate 4 Red Flashes and will enter a one-hour soft lockout.

**5 RED FLASHES:** This fault is indicated if the normally closed rollout switch opens or if the limit switch has been open longer than 15 minutes. The rollout control is manually reset. Check for proper combustion air, proper inducer operation, and primary heat exchanger failure or burner problem. The control will enter a hard lockout and power will have to be cycled off and on to reset the control after the problem has been corrected.

**6 RED FLASHES:** This indicates that while the unit was operating, the pressure switch opened four times during the call for heat. Check for faulty inducer, blocked vent pipe or faulty pressure switch. The furnace will lock out for one hour and then restart.

**7 RED FLASHES:** This fault code indicates that the flame could not be established during three trials for ignition. Check that the gas valve switch is in the ON position. Check for low or no gas pressure, faulty gas valve, dirty or faulty flame sensor, faulty hot surface ignitor, loose wires or a burner problem. The furnace will lock out for one hour and then restart.

**8 RED FLASHES:** This fault is indicated if the flame is lost five times (four recycles) during the heating cycle. Check for low gas pressure, dirty or faulty flame sensor or faulty gas valve. The furnace will lock out for one hour and then restart.

**9 RED FLASHES:** Indicates reversed line voltage polarity, grounding problem or reversed low voltage transformer wires. Both heating and cooling operations will be affected. Check polarity at furnace and branch. Check furnace grounding. Check that flame probe is not shorted to chassis. The furnace will not start the ignition sequence until this problem is corrected.

**10 RED FLASHES:** Gas valve energized with no call for heat. The main blower and inducer blower will run and no ignition sequence will be started as long as this condition exists. Check gas valve and gas valve wiring.

**11 RED FLASHES:** This indicates that the main limit switch has opened its normally closed contacts and has remained open for more than five minutes. This condition is usually caused by a failed blower motor or blower wheel. The control will enter a hard lockout and power will have to be cycled off and on to reset the control after the problem has been corrected.

**13 RED FLASHES:** This fault code indicates that the 2nd stage (high) pressure switch is open with a call for 2nd stage heating (high fire) present. Check for faulty inducer, blocked vent pipe, broken or disconnected pressure switch hoses, disconnected pressure switch or inducer wiring or faulty pressure switch.

**4 AMBER FLASHES:** The control is receiving a “Y” signal from the thermostat without a “G” signal. The furnace will operate normally in both heating and cooling, but this fault code will be displayed in order to alert the user that there is a wiring problem. Verify that the “G” wire from the thermostat is connected properly.

**SOFT LOCKOUT:** This control includes a soft lockout that will reset automatically after one hour. This provides protection to an unoccupied structure if a temporary condition exists causing a furnace malfunction. An example of this is a temporary interruption in gas supply that would prevent the furnace from lighting. The control will keep trying to light each hour and will resume normal operation if the gas supply is restored.

**HARD LOCKOUT:** Some fault conditions result in a hard lockout, which requires power to the control to be turned off and then back on to reset the control. The control will not automatically restart.

---

**IGNITION CONTROL FLAME SENSE LEVELS**

- Normal flame sense current is approximately 3.7 microamps DC (μA)
- Low flame signal warning starts at 0.35 microamps.
- Low flame signal control lockout point is 0.24 microamps DC (μA)

---

**DIAGNOSTIC FAULT CODE STORAGE AND RETRIEVAL**

The control in this furnace is equipped with memory that will store up to five error codes to allow a service technician to diagnose problems more easily. This memory will be retained even if power to the furnace is lost. **This feature should only be used by a qualified service technician.**

If more than five error codes have occurred within last 30 days, only the five most recent will be retained. The furnace control board has a button, labeled LAST ERROR that is used to retrieve error codes. This function will only work if there are no active thermostat signals. So any call for heating, cooling or continuous fan must be terminated before attempting to retrieve error codes.

To retrieve the error codes, push and release LAST ERROR button. The LED on the control will then flash the error codes that are in memory, starting with the most recent. There will be a two-second pause between each flash code. After the error codes have all been displayed, the LED will resume the normal slow green flash after a five second pause. To repeat the series of error codes, push the button again.

If there are no error codes in memory, the LED will flash two green flashes. To clear the memory, push the LAST ERROR button and hold it for more than five seconds. The LED will flash three green flashes when the memory has been cleared, then will resume the normal slow green flash after a five-second pause.
### SECTION XII: REPLACEMENT PARTS LIST

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOTOR</td>
</tr>
<tr>
<td>BLOWER, COMBUSTION</td>
</tr>
<tr>
<td>MOTOR, DIRECT DRIVE BLOWER</td>
</tr>
<tr>
<td>ELECTRICAL</td>
</tr>
<tr>
<td>CONTROL, FURNACE</td>
</tr>
<tr>
<td>CONTROL, TEMPERATURE</td>
</tr>
<tr>
<td>IGNITER</td>
</tr>
<tr>
<td>SENSOR, FLAME</td>
</tr>
<tr>
<td>SWITCH, DOOR</td>
</tr>
<tr>
<td>SWITCH, LIMIT</td>
</tr>
<tr>
<td>SWITCHES, PRESSURE</td>
</tr>
<tr>
<td>TRANSFORMER</td>
</tr>
<tr>
<td>VALVE, GAS</td>
</tr>
<tr>
<td>AIR MOVING</td>
</tr>
<tr>
<td>HOUSING, BLOWER</td>
</tr>
<tr>
<td>WHEEL, BLOWER</td>
</tr>
<tr>
<td>FABRICATED PARTS</td>
</tr>
<tr>
<td>BRACKET, BLOWER TRACK (2 req’d)</td>
</tr>
<tr>
<td>BURNER, MAIN GAS</td>
</tr>
<tr>
<td>HEAT EXCHANGER ASS’Y</td>
</tr>
<tr>
<td>MANIFOLD, GAS</td>
</tr>
<tr>
<td>PANEL, BLOCKOFF</td>
</tr>
<tr>
<td>PANEL, DOOR (2 req’d)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>FABRICATED PARTS Continued</td>
</tr>
<tr>
<td>PANEL, TOP</td>
</tr>
<tr>
<td>RAIL, BLOWER (2 req’d)</td>
</tr>
<tr>
<td>SHELF, BLOWER</td>
</tr>
<tr>
<td>MISCELLANEOUS</td>
</tr>
<tr>
<td>BAG, PARTS</td>
</tr>
<tr>
<td>BRACKET, DOOR</td>
</tr>
<tr>
<td>DIAGRAM, WIREF</td>
</tr>
<tr>
<td>FERRULE (3 req’d)</td>
</tr>
<tr>
<td>GASKET, FOAM (Door) (1.5 ft req’d)</td>
</tr>
<tr>
<td>GROMMET (3 req’d)</td>
</tr>
<tr>
<td>HARNESS, WIREF</td>
</tr>
<tr>
<td>HOSE, CONDENSATE</td>
</tr>
<tr>
<td>HOSE, RAIN GUTTER</td>
</tr>
<tr>
<td>KNOB, QUARTER TURN (4 req’d)</td>
</tr>
<tr>
<td>MOTOR MOUNT</td>
</tr>
<tr>
<td>ORIFICE, BURNER (Natural #45)</td>
</tr>
<tr>
<td>PAN, CONDENSATE</td>
</tr>
<tr>
<td>PLUG, SEAL, 7/8&quot;</td>
</tr>
<tr>
<td>PLUG, SEAL, 2-3/8&quot;</td>
</tr>
<tr>
<td>PLUG, VENT PIPE</td>
</tr>
<tr>
<td>SIGHT GLASS, OVAL (2 req’d)</td>
</tr>
<tr>
<td>TUBING, SILICON</td>
</tr>
</tbody>
</table>

### REPLACEMENT PART CONTACT INFORMATION

This is a generic parts list. To request a complete parts list, refer to the contact information below:

- Visit our website at www.source1parts.com for the following information:
  1. Search for a part or browse the catalog.
  2. Find a dealer or distributor.
  3. Customer Service contact information.
     a. Click on the “Brand Links” button
     b. Click on the “Customer Service” button

- You can contact us by mail. Just send a written request to:

  Johnson Controls Unitary Products
  Consumer Relations
  5005 York Drive
  Norman, OK 73069
SECTION XIII: WIRING DIAGRAM

Wiring Diagram - 95% Two-Stage Standard ECM Furnace

CAUTION
OPEN ALL DISCONNECTS BEFORE SERVICING THIS UNIT

PRECAUTION
OUVREZ LES DISJONCTEURS AVANT DE PROCÉDER AVEC LE SERVICE

Legend

DS - Door Switch
ROS - Rollout Switch
TST - Wall Thermostat
PS1 - Pressure Switch 1 Stage
PS2 - Pressure Switch 2 Stage
PS3 - Pressure Switch Condensate
MOT - Circulating Motor
IDM - Inducer Motor
HSI - Hot Surface Igniter
LS - Limit Switch
HUM - Humidifier
XFRMR - Transformer
GV - Gas Valve
EAC - Electronic Air Cleaner
PF - Power Factor Choke

Legend

DS - Commutateur de porte
ROS - Commutateur de roulement
XFRMR - Transformateur
GV - Soupe de gaz
HUM - Humidificateur
TST - Thermostat

Diagnosis Fault Codes

<table>
<thead>
<tr>
<th>Flashes</th>
<th>Fault Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Power Off or blown fuse</td>
</tr>
<tr>
<td>Slow Green</td>
<td>Normal Operation</td>
</tr>
<tr>
<td>Slow Amber</td>
<td>Normal Operation with call for heat</td>
</tr>
<tr>
<td>Steady on Red</td>
<td>Open 24V control fuse OR Control Failure</td>
</tr>
<tr>
<td>Rapid Amber</td>
<td>Low flame sense current</td>
</tr>
<tr>
<td>Amber</td>
<td>Y signal with no G from thermostat</td>
</tr>
<tr>
<td>1 Red</td>
<td>Flame present with gas off</td>
</tr>
<tr>
<td>2 Red</td>
<td>Check pressure switch wiring</td>
</tr>
<tr>
<td>3 Red</td>
<td>Vent, intake, OR termination problem</td>
</tr>
<tr>
<td>4 Red</td>
<td>Airflow problem OR open fuse</td>
</tr>
<tr>
<td>5 Red</td>
<td>Flame Rollout OR open fuse</td>
</tr>
<tr>
<td>6 Red</td>
<td>Repeated 3 Red</td>
</tr>
<tr>
<td>7 Red</td>
<td>Failed to light burners</td>
</tr>
<tr>
<td>8 Red</td>
<td>Loss of flame during call for heat</td>
</tr>
<tr>
<td>9 Red</td>
<td>Hot/Neutral reversed OR poor ground/neutral</td>
</tr>
<tr>
<td>10 Red</td>
<td>Gas valve shorted &quot;ON&quot;</td>
</tr>
<tr>
<td>11 Red</td>
<td>Check blower motor/wiring</td>
</tr>
<tr>
<td>13 Red</td>
<td>Vent, intake, OR termination problem</td>
</tr>
</tbody>
</table>

Fault Code Retrieval

Notice - Only a qualified service technician should use this feature.
Fault code retrieval functions will work only if there are no active thermostat signals.
To retrieve fault codes, push and release ERROR button on control board. The LED will flash the last five error codes, beginning with the most recent. If there are no fault codes in memory, the LED will give two green flashes. To clear the fault code memory, push and hold the ERROR button for at least five seconds. The LED will give three green flashes when the memory has been cleared.

NOTES:
1. If any of the original wire as supplied with the furnace must be replaced, it must be replaced with wiring material having a temperature rating of at least 221 degrees F (105 degrees C).
2. Blower motor speed connections shown are typical, but may vary by model and application.

NOTES:
1. Si l'un des fils d'origine fourni avec ce four doit être remplacé, il doit être remplacé avec le fil ayant un degré de température d'au moins 221 degrés F (105 degrés C).
2. Les connexions à grande vitesse du moteur du ventilateur indiquées sont typiques, mais peuvent varier selon le modèle et par application.

FIGURE 41: Wiring Diagram
### SECTION XIV: START UP SHEET

**33” 96% AFUE Two Stage Standard ECM Gas Furnace Start Up Sheet**

Proper furnace start up is critical to customer comfort and equipment longevity.

<table>
<thead>
<tr>
<th>Start-Up Date</th>
<th>Technician Performing Start-Up</th>
<th>Installing Contractor Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Owner Information

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>City</th>
<th>State or Province</th>
<th>Zip or Postal Code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Equipment Data

<table>
<thead>
<tr>
<th>Furnace Model</th>
<th>Furnace Serial</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Indoor Coil Model</th>
<th>Indoor Coil Serial</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outdoor Unit Model</th>
<th>Outdoor Unit Serial</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Furnace Configuration

- [ ] Upflow
- [ ] Downflow
- [ ] Horizontal Left
- [ ] Horizontal Right

### Filter, Thermostat, Accessories

<table>
<thead>
<tr>
<th>Filter Type</th>
<th>Filter Size</th>
<th>Filter Location(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thermostat Type</th>
<th>Other System Equipment and Accessories</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Connections -- All Per Installation Instructions and Local Code

- [ ] Unit is level or tilted slightly forward
- [ ] Gas piping is connected (including drip leg)
- [ ] Vent system is connected
- [ ] Supply plenum and return air are connected

### Condensate Management

- [ ] Condensate tubing is correctly installed for the furnace position
- [ ] Condensate drain is connected

### Venting

<table>
<thead>
<tr>
<th>Intake Size</th>
<th># of 90 Degree Els</th>
<th># of 45 Degree Els</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exhaust Size</th>
<th># of 90 Degree Els</th>
<th># of 45 Degree Els</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- [ ] Venting system is the proper size, within the limitations of the chart in the installation instructions, properly connected to the furnace, and properly pitched

### Electrical: Line Voltage

- [ ] Polarity is correct (black is L1 (hot), white is N (neutral))
- [ ] Ground wire is connected from the furnace to electrical panel

<table>
<thead>
<tr>
<th>Line voltage value to furnace (volts AC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

### Electrical: Low Voltage

- [ ] Thermostat wiring is complete
- [ ] Thermostat heat anticipator set to .4 or (6 cycles per hour for electronic thermostats)

<table>
<thead>
<tr>
<th>Low voltage value between &quot;R&quot; and &quot;C&quot; on furnace control board (volts AC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

### Staging:

<table>
<thead>
<tr>
<th>Thermostat Staging</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OFF</td>
<td>10 MIN</td>
<td>15 AUTO</td>
</tr>
</tbody>
</table>

**Continued on next Page**
## Gas Side

Gas Type  
- [ ] Natural Gas  
- [ ] LP Gas (Requires LP conversion kit)

LP Gas Conversion Kit Part # Used  
LP Conversion Kit Installed By

Inlet Gas Pressure (in. w.c.)  
Low Fire Manifold Gas Pressure (in. w.c.)  
High Fire Manifold Gas Pressure (in. w.c.)

Calculated input in btuh - clock the gas meter in high fire (Nat Gas Only)

- [ ] Burner flame inspected -- flames are blue and extending directly into the primary heat exchanger cells

## Air Side: System External Static Pressure

- Supply static **before** indoor coil (in. w.c.)
- Supply static **after** indoor coil (in. w.c.)
- Return Static (in. w.c.) **before** filter
- Return Static (in. w.c.) **after** filter (furnace side)

Total External Static Pressure

## Air Side: Heating (STD ECM)

- Low Heat Blower Speed Selected  
- [ ] 1 2 3 4 5  
- [ ] 1 2 3 4 5  
- [ ] 1 2 3 4 5  

- High Heat Blower Speed Selected  
- [ ] 1 2 3 4 5  
- [ ] 1 2 3 4 5  
- [ ] 1 2 3 4 5  

- Temperature rise in degrees F measured in low fire
- Temperature rise in degrees F measured in high fire

## Air Side: Cooling (STD ECM)

- Low Cool Blower Speed Selected  
- [ ] 1 2 3 4 5  
- [ ] 1 2 3 4 5  
- [ ] 1 2 3 4 5  

- High Cool Blower Speed Selected  
- [ ] 1 2 3 4 5  
- [ ] 1 2 3 4 5  
- [ ] 1 2 3 4 5  

- Cooling CFM delivery (use Blower Performance Data Chart)  
- Hi  
- [ ] Low

## Air Side: Continuous Fan (STD ECM)

- Blower Speed Selected  
- [ ] Lo Heat  
- [ ] Hi Heat  
- [ ] Lo Cool  
- [ ] Hi Cool

## Cycle Test

- [ ] Operate the furnace through several heating cycles from the thermostat, noting and correcting any problems
- [ ] Operate the furnace through continuous fan cycles from the thermostat, noting and correcting any problems

## Clean Up

- Installation debris disposed of and furnace area cleaned up?

## Owner Education

- [ ] Give owner the owner’s manual provided
- [ ] Explain operation of system to equipment owner
- [ ] Explain the importance of regular filter replacement and equipment maintenance
- [ ] Explain thermostat use and programming (if applicable) to owner