TITAN™
Multistage Industrial Chillers

Up to 8,500 Tons (30,000 kWR)

Metric Conversions
TABLE OF CONTENTS

INTRODUCTION ... 3

MECHANICAL SPECIFICATIONS .. 5
 Standards and Codes .. 9
 Table 1 – Standard Design Working Pressures (DWP) ... 10
 Table 2 – Standard Factory Test Requirements .. 10
 Modifications and Accessories .. 12

APPLICATION DATA .. 14
 Scope .. 14
 Location ... 14
 Water Circuits ... 14
 Multiple Units ... 15
 Refrigerant Relief Piping ... 16
 Sound and Vibration Considerations ... 16
 Thermal Insulation .. 16
 Ventilation ... 16
 Electrical Considerations .. 17
 Field Performance Testing .. 18

CONTROL CENTERS – DESCRIPTIONS .. 19
 Table 3 – Input List .. 20
 Table 4 – Output List ... 21

GUIDE SPECIFICATIONS .. 22
 Overview ... 22
 Jobsite / Operating Conditions – English Units of Measure ... 23
 Jobsite / Operating Conditions – SI Metric Units of Measure ... 24
 Optional Extended Operating Range .. 25
 Optional Free Cooling .. 25
 General ... 25
 Driveline – Compressor / Gear / Motor / Base / Assembly .. 25
 Compressor Motor Controller (Starter) .. 29
 Pressure Vessels – Cooler / Condenser / Intercooler .. 30
 Refrigerant Transfer Unit / Pumpout Receiver ... 31
 Control Center – Input / Output List ... 31
 Optional – Vibration Monitoring System .. 34
 Miscellaneous Considerations ... 34

SI METRIC CONVERSION .. 36
YORK Titan™ Multistage Industrial Chillers offer a complete combination of features for total owner satisfaction — for district energy, central plant and similar demanding industrial chiller applications up to 8,500-ton (30,000 kWR) capacity.

MATCHED COMPONENTS MAXIMIZE EFFICIENCY
Actual chiller efficiency cannot be determined by analyzing the theoretical efficiency of any one chiller component. It requires a specific combination of heat exchangers (cooler, condenser, intercooler), compressor, gear and motor performance to achieve the lowest system kW/Ton (kW/kWR). YORK Titan™ chiller technology matches chiller system components to provide maximum chiller efficiency under actual — not just theoretical operating conditions, using refrigerants, such as R-134a and R-22.

APPLICATION FLEXIBILITY
Titan™ chillers can be applied in many ways and with many modifications to suit the most intricate application. These chillers are designed with such drivers as induction or synchronous electric motors, condensing and/or exhausting steam turbines, gas or diesel engines or gas turbines. They can be applied to a broad range of brine cooling requirements; for heat recovery or heat pumps; and for river or sea water, closed water circuit (radiator) or air-cooled condensing.

OPEN DRIVE DESIGN
Hermetic-motor burnout can cause catastrophic damage to a chiller. The entire chiller must be cleaned, and the refrigerant replaced. YORK Titan™ centrifugal chillers eliminate this risk by utilizing open-drive motors, engines and turbines. Refrigerant never comes in contact with the motor, preventing contamination of the rest of the chiller.

PRECISE CHILLED WATER TEMPERATURE SETTING TO 0.1°F (0.05°C)
A chiller is designed to produce chilled water at a given temperature. In the past, the setting of this crucial temperature involved laborious trial-and-error adjustments, often accurate to only +/−1°F (0.5°C). And a setting of 1°F (0.5°C) below design can increase chiller energy consumption by as much as 3%, wasting thousands of kilowatt-hours per year.

The YORK Titan™ Control Center eliminates this energy waste. Now you have the capability of setting chilled water temperature to a resolution of 0.1°F (0.05°C) — right at your fingertips. Energy savings through chiller control has never been easier — or more accurate.

HIGH-EFFICIENCY HEAT EXCHANGERS
Titan™ chiller heat exchangers offer the latest technology in heat transfer surface design to give you maximum efficiency and compact design. Water-side and refrigerant-side design enhancements minimize both energy consumption and tube fouling.

CHOICE OF ENERGY SAVERS
YORK Titan™ chillers are also available as an option with “Free Cooling” (compressor-less cooling), operating at up to 60% design load. This modification is used during those periods of the year when the available condenser water temperature is lower than the required chilled water temperature. This mode of operation offered by YORK has almost doubled the capacity compared to competitive free cooling modes, and can save thousands of dollars in operating costs by eliminating the need to operate the compressor during these conditions.

Heat recovery, another energy saver, is available for the reclamation of heat from condenser water. A modified split-bundle shell and tube condenser is used for this application.

For those places of the world where water is scarce, the Titan™ Chiller can be applied with an air-cooled condenser, thereby eliminating the need for water in the condensing portion of the air-conditioning cycle.

INDUSTRIAL APPLICATIONS
The YORK Titan™ chiller can also be selected and manufactured to meet many industrial applications, such as chemical and petrochemical processes, brine cooling, mine applications, etc. The uses are practically unlimited.

EQUIPMENT SELECTION OPTIMIZED
The YORK Titan™ Chiller operates economically throughout the year and over the life of the equipment because of its highly flexible design. Each unit is optimized to suit each unique job requirement utilizing the YORK experience with every type of application.
Titan™ Chillers are selected to suit each individual job application, physical area size, and location requirements. A broad base of standardized components have been designed to meet every possible selection requirement through use of the YORK Titan™ Chiller Computer Selection/Rating Program. All are equipped and rated in accordance with the requirements of ARI Standard 550 (latest revision).

LOWER POWER DEMAND AND OPERATING COSTS
The Titan™ Chiller is engineered to operate efficiently with the reduced entering condenser water temperatures usually available during most of the operating year. Power consumption falls as condenser water temperature drops, thus lowering operating costs. The Titan™ unit’s ability to operate down to approximately 55°F (12.8°C) entering condenser water temperature reduces power usage tremendously as shown in the curve, Fig. 1.

Steam turbine drive capability adds further incremental energy savings as a result of the turbine governor being able to automatically adjust turbine/compressor speed in response to required head to optimize unit performance, in conjunction with pre-rotation vane position.

PARTLOAD OPERATION
The ability of large tonnage chillers to operate at partload conditions is most important to economical operation. YORK Titan™ chillers are equipped with effective fully automatic partload capacity controls. Automatic control of the hot gas by-pass in conjunction with the compressor’s prerotation vanes (and speed control with steam turbine drive) coordinates their operation with the system head requirements (entering condenser water temperature) to minimize operating costs. The YORK multistage compressor with pre-rotation vanes is especially efficient in partload performance in the 50% to 100% capacity range which is most crucial to large tonnage units. Automatic safe control down to 10% partload conditions is incorporated in the overall unit/control system.

PARTLOAD PERFORMANCE
The versatility of YORK’s TMaster Computerized Selection Program for Titan™ Chiller(s) allows in-depth studies for partload evaluations where energy is of major concern. Typical partload performance is graphically shown in Fig. 1, Curve 1, depicting the reduction of compressor shaft horsepower (i.e. energy) as the required load is reduced, and the condenser water temperature falls. If a constant design water temperature is required (typically 85°F, 29.4°C), then Curve 2 is typical.

STANDARD CHILLERS
Titan™ Chillers are offered in a broad range of sizes and component details to meet unique customer requirements. Chillers in a series of standard pre-selected increments up to 5,000 tons (17,580 kWR) can be used to achieve significant savings in first cost and delivery time. Contact your YORK Sales Representative for performance, dimensions, and details.

FIG. 1 – PARTLOAD PERFORMANCE
Mechanical Specifications

COMPRESSOR – INDUSTRIAL TYPE – 2 or 3-Stage

CASING – Rigid, close grain, high grade cast iron – horizontally split to provide access to rotor assembly – top vertical flanged suction and discharge connections – flanged interstage gas connection for intercooler – design allows major wearing parts (journal and thrust bearings, shaft seal, and main oil pump) to be inspected or replaced without removing upper half of casing. Compressor casing designed and constructed in accordance with Design Working Pressures (DWP) detailed in Table 1 and tested as detailed in Table 2.

ROTOR – Fabricated (furnace brazed) aluminum alloy impellers, shrouded type with backward curved blades, dynamically balanced, and overspeed tested; designed and constructed to resist corrosion, erosion and pitting, and maintain initial balance and performance characteristics – hot rolled heat treated alloy steel main shaft designed to result in operation well below first critical speed, without vibration – rotor assembly dynamically balanced – balance piston on last stage impeller to minimize axial thrust load on thrust bearing.

BEARINGS – Precision machined aluminum alloy single piece tapered bore type journal bearings; aluminum alloy tilting pad type thrust bearing; aluminum alloy reverse thrust bearing. Bearings are accessible without removing the top half of casing.

LUBRICATION SYSTEM – Completely factory packaged, assembled and piped with oil sump reservoir as integral part of compressor. The sump is vented to compressor suction pressure.

- A main oil pump mounted directly on rotor shaft assures forced feed lubrication to all bearings and seals at all times, even under power failure coast-down conditions.
- An external auxiliary oil pump (CAOP) assures pressure lubrication prior to start-up during normal shutdown and at any time main oil pump does not maintain required pressure. The CAOP is a cast iron gear type pump, close coupled to a TEFC motor available for 200 thru 600 volts – 3 phase – 60/50 Hertz service: 2 HP (1.5 kW) for M__26 and M__38, and 3 HP (2.2 kW) for M__55 compressors.
- Dual Oil Filters with 15-micron replaceable pleated paper elements, and change-over valve permitting filter element replacement during unit operation.
- Oil cooler, external water cooled cleanable shell and copper tube type – for entering water temperatures up to 90°F (32.2°C) at .0005 Ft°F hr/Btu(.000088m² °C/W) fouling factor.
- Thermostatic oil temperature control valve bypasses the oil cooler to maintain desired oil cooler leaving oil temperature.
- Oil heater(s), 1000 watt, 115 volt – 1 phase –60/50 Hertz thermostatically controlled immersion type – 1 heater for M__26, and 2 heaters for M__38 and M__55 compressor – to maintain 150°F (65.5°C) sump oil temperature during shutdown to minimize refrigerant accumulation in oil.
- Weld pad type oil level sight glass.
- Hard wired safety switches for High Thrust Bearing Oil Discharge Temperature and Low Oil (differential) Pressure.
- 100 ohm RTD with 4-20mA temperature transmitters (3) for: Refrigerant Discharge Gas; Thrust Oil Discharge; Shaft End Bearing Oil Outlet.
- Thermometers (dual scale °F/°C) industrial bimetallic element 5” (127 mm) dial adjustable angle type with stainless steel case, and 3/4” (19 mm) NPT S.S. Thermowells (5) for: Supply Bearing Oil; Thrust Bearing Discharge Oil; Oil Reservoir (sump); Shaft End Bearing Outlet; and Oil After Oil Cooler.
- Pressure gauges – Industrial 4-1/2” (114 mm) dial solid front phenolic case with brass socket and phosphor bronze bourdon tube, with dual English (psi) and metric (kPa) scale (5) for: Supply Bearing Oil After Filter; Oil Before Filter; Thrust Bearing Discharge Oil; Balance Piston; Oil Sump.
- Pressure taps for connection to Pressure Transmitters adjacent to above gauges.
- Automatic Sump Vent Valve to slowly equalize sump pressure to suction on start-up. Consists of ball valve with pneumatic operator (80 PSIG / 552 kPa air required) with actuating air solenoid valve, filter, restrictor valve and gauges.
- Oil charging valve and oil drain valves.

All electrical components for NEMA-1 application.

SHAFT SEAL – Rotating cast iron runner – stationary precision carbon ring, spring loaded – small face area, low rubbing speed. The shaft seal is pressure lubricated in operation and oil flooded at all times by means of an upper gravity feed reservoir in the sump housing. The shaft seal is accessible without removing top half of casing.

CAPACITY REDUCTION – YORK bronze air foil prerotation vanes (PRV) radially arranged in the inlet to the first stage impeller to regulate the volume of refrigerant suction gas handled by the compressor to provide highly efficient partload operation; and in conjunction with automatic hot gas bypass provide
capacity reduction to 10% of design load under any extremes of operation conditions – minimum percent of design load which may be achieved with PRV alone depends on such variables as condenser water flow, variation in condenser water temperature with reduction in cooling load, and individual compressor performance characteristics (and, if turbine drive, whether speed control is being utilized) – PRV linked by simple, positive annular ring with ball joints to individual vane arms – automatic pneumatic PRV operator furnished factory mounted (80 PSIG / 552 kPa air required, 100 PSIG / 689 kPa max.) – automatic closing on shutdown, or power failure.

HIGH SPEED COUPLING/DRIVE SHAFT – YORK design YORKFLEX coupling, light weight, non-lubricated threaded design, with flexible alloy steel threaded drive shaft, designed to provide access to shaft seal and front journal bearing without disturbing main drive alignment. The high speed coupling guard is fabricated carbon steel with a poured aluminum liner.

GEAR – An external speed increaser gear is used to increase the 4-pole motor operating speed to the required compressor speed. The gear is of the double helical type, and includes a gear type low speed flexible coupling and low speed coupling guard. The gear is furnished with wet sump, a low speed shaft driven main oil pump and auxiliary motor driven oil pump. A shell and tube oil cooler with thermostatic oil temperature control valve to by-pass oil cooler to maintain desired oil cooler leaving oil temperature (similar to compressor), dual oil filters with change-over valve, local oil pressure gauge, oil thermometer and oil level indicator are provided. Sensors as detailed by the Control Panel Input/Output list are provided on the gear as applicable. The gears comply to AGMA standards.

DRIVERS

TYPICAL STANDARD PRIME MOVER – Air cooled ODP, WP II (LoNoise), or TEWAC (Totally enclosed Water-To-Air-Cooled) induction motor with external speed increasing gear. Driver is sized to efficiently and continuously fulfill chiller unit compressor brake horsepower (including speed increaser) and speed requirements, and capable of sustained operation at 110% of that total BHP (kW). Motors are typically medium voltage 2300 to 6600 volt - 3 ph - 50/60 Hz. Motor drive units have a motor/starter combination to start the compressor (including speed increaser) and bring it up to speed without exceeding starting inrush limitations as may be project defined. Standard motor bearings are oil lubricated sleeve type (anti-friction bearings below 2000 HP / 1491 kW). Where flood lube is dictated by the motor manufacturer (generally 4500 HP / 3356 kW and larger), oil from the gear may be piped to the motor bearings and drained back to the gear sump. Motors typically comply to NEMA MG-1 standards.

STARTERS – Stand alone NEMA-1 enclosure, and may be across the line. Commonly a reduced voltage starter such as 65% tap auto-transformer is used to minimize inrush current as well as to reduce starting stress on the driveline components. A microprocessor based motor protection relay and display is standard.

DRIVELINE/BASE ASSEMBLY

DRIVELINE BASE – Single base to mount compressor, speed increaser (if required) and driver – rigid design for controlled alignment – welded structural steel channel construction – steel mounting plates/pads for individual components – optical leveling pads – mounting brackets for spring type isolators (if ordered) or holes for anchor bolting and field grouting to concrete.

DRIVELINE ASSEMBLY – Components factory assembled, bolted, rough aligned on base – final alignment and doweling after installation prior to unit start-up. Driveline component (compressor, speed increaser, motor or steam turbine) oil cooler water piping, factory assembled to common manifold at the end of the base – galvanized steel pipe and fittings with manual stop valves, and water solenoid valve and strainer.

PRESSURE VESSELS – ASME CODE

Pressure vessels (cooler, condenser, intercooler, pumpout receiver and oil return unit) designed, constructed, tested and stamped (certified) on both the refrigerant (shell) and water (tube) sides in accordance with the requirements of the ASME Code for Unfired Pressure Vessels – Section VIII Div. 1, as applicable; and ANSI/ASHRAE Standard 15 Safety Code; for Design Working Pressures (DWP) detailed in Table 1, and tested as detailed in Table 2.

COOLER AND CONDENSER

SHELLS – Rolled from carbon steel plate – fusion welded seams – shells to accommodate tube lengths from 14 ft. (4267 mm) to 30 ft. (9144 mm) in 2 ft. (610 mm) increments. – 1" (25 mm) minimum thickness steel tube sheets welded to ends of shells – intermediate tube supports spaced on 48" (1219 mm) maximum centers – integral mounting stands to support condenser on cooler, and cooler support feet providing mounting brackets for level-adjusting, spring-type vibration isolators.
TUBES – 3/4” (19 mm) OD, copper heat exchanger tubes – externally enhanced and internally ribbed – spaced on 7/8” (22 mm) triangular pitch and roller expanded into tube sheets with sealant to insure refrigerant gas-tight joints – individually replaceable.

WATER BOXES – Marine type, integrally welded to the tube sheet, with removable covers to provide access to tubes without breaking water connections. Full round, fabricated steel construction with necessary removable steel pass baffles, and 150 PSIG (1034 kPa) radially oriented, weld-end water connections of fixed, predetermined sizes to suit maximum water flows, with nitrogen holding charge. Suitable for flanged or direct-welded pipe connections.

COOLER – Horizontal flooded shell and tube type – tubes roller expanded into intermediate tube supports – liquid inlet with slotted duct distribution plate – evaporator designed to keep all the tubes wetted, even under varying load conditions, for maximum efficiency – upper portion of shell free of tubes to provide refrigerant liquid-gas separation space – steel suction gas baffle or mesh eliminators for even distribution of gas flow, and liquid droplet elimination – hot gas bypass inlet baffle assures uniform gas distribution and prevents direct gas impingement on cooler tubes – two 2” (51 mm) sight ports – high capacity relief valve(s) in accordance with ANSI/ASHRAE Standard 15 Safety Code in series with a ports – high capacity relief valve(s) in accordance with ANSI/ASHRAE Standard 15 Safety Code – for field mounting on side of vertical intercooler and compressor, including stop valves and tubing; oil return system piping to cooler, condenser, injectors, including stop valves; copper gauge and control pressure liquid bottom outlet. Necessary interconnecting refrigerant piping, valves and fittings for welded fabrication, in accordance with ANSI B31.5 Piping Code – Schedule 40 steel, or greater, thru 10” (254 mm), 0.375” (9.5 mm) wall 12” (305 mm) and larger – flanged or butt weld above 2” (51 mm), and flanged, socket weld or threaded 2” (51 mm) and smaller, as necessary for fabrication and/or service accessibility – partially factory pre-fabricated to minimize installation labor costs, but allowing for (1) field cut and (1) weld in each plane to compensate for actual component alignment: suction line from cooler to compressor, including dual connection header on coolers of 22’ (6706 mm) tube length and longer – discharge line from condenser to cooler liquid connection – interstage gas line from intercooler to cooler liquid connection – interstage gas line from intercooler to compressor including automatic pneumatic interstage control valve – hot gas line from condenser to cooler, including automatic hot gas valve and pneumatic operator – auxiliary high pressure liquid line to interstage gas and hot gas line injectors, including stop valves; copper gauge and control tubing; oil return system piping to cooler, condenser, intercooler and compressor, including stop valves and replaceable element oil filter; purge valve; and pumpout liquid and gas lines from chiller unit to refrigerant transfer unit/receiver (located within 50’ (15,240 mm) from chiller), shipped loose for field assembly. Straight lengths of pipe only and fittings furnished when required. Lifting lugs for suction and discharge lines furnished for field welding to facilitate handling.

CONDENSER – Horizontal shell and tube type – discharge gas inlet baffles provide for uniform gas distribution and prevent high velocity impingement on tubes – tube bundle configuration and baffling provide effective condensed refrigerant liquid drain off to maintain efficient condenser performance – and an integral axial flow refrigerant liquid sub-cooler, with refrigerant liquid level controller and pneumatically operated high-pressure liquid valve. Refrigerant connections: discharge gas inlet, liquid outlet, hot gas outlet, pumpout gas, purge, and oil return unit gas supply.

INTERCOOLER – Single stage vertical type fabricated from carbon steel with welded top and bottom heads – circular fixed mesh eliminator – low stage float operated expansion valve with hinged access port and manual external float valve adjustor – (2) thermometer wells in intermediate pressure chamber – 2” (51 mm) sight ports – for low pressure float action (2), intermediate pressure chamber (2), and above eliminator chamber (2) – three support feet with mounting brackets for spring-type isolator(s). Bracket for mounting Oil Return Unit on side of intercooler. Refrigerant connections: high pressure liquid inlet, interstage flash gas top outlet, low pressure liquid bottom outlet.

REFRIGERANT PIPING

OIL RETURN SYSTEM – Oil return unit – fusion welded steel shell (ASME Code); with internal electric heaters, solenoid valve, outlet oil float drainer, temperature control and thermometer, and with single relief valve in accordance with ANSI/ASHRAE Standard 15 Safety Code – for field mounting on side of vertical intercooler. Continuous automatic function during compressor operation to maintain minimum oil concentration in refrigerant for most efficient evaporator performance, and eliminate need for periodic oil additions
to make up normal losses from compressor to refrigerant circuit. For units with less than 10,000 Lbs. (4536 kg) of refrigerant, two 1000-watt heaters are used. For larger units, two 2000-watt heaters are supplied.

CONTROL CENTERS – A broad range of microprocessor-based control centers, wall or stand-alone floor mounted, with vacuum fluorescent or color graphic CRT display of conditions and values, are available to provide all necessary controls and control logic to provide fully automatic operation, pneumatic capacity control and safety protection of the chiller unit, as further detailed under CONTROL CENTERS.

MISCELLANEOUS

VIBRATION ISOLATORS

High efficiency – 1" (25 mm) deflection – level adjusting – vertically restrained – spring type isolators – coil springs in series with neoprene waffle pad isolation on base plate – furnished for: cooler/condenser assembly, intercooler, and chiller unit driveline assembly.

THERMOMETERS – 5" (127 mm) dial type bimetal adjustable angle thermometer with stainless steel separable well are supplied for cooler refrigerant liquid inlet and compressor discharge gas temperatures. Test thermometer wells are supplied for suction line and the interstage gas line at compressor.

TOOLS – Special wrenches for YORKFLEX high speed coupling, drive shaft and main shaft – snap ring pliers for seal and bearing retainer rings – special shaft socket wrench – guide pins for casing assembly – manual oil charging pump. A wall mountable lockable toolbox is provided for storage of the tools.

REFRIGERANT AND OIL CHARGES – Initial charge of refrigerant R-134a or R-22 shipped separately by tank truck bulk delivery – initial charge of compressor and driveline component oil shipped separately.

REFRIGERANT TRANSFER (Recovery) SYSTEM – Certified per ARI Standard 740 as a R-134a/R-22 Refrigerant Recovery Unit.

RTU-10 – YORK 3 cylinder reciprocating compressor with crankcase oil heater, 125 watt, 115 volt – 1 phase – 60/50 Hertz; V-belt drive with belt guard; 10 HP (7.5 kW) open drip-proof motor (for R-134a & R-22) 200 thru 600-3-60/50 voltage – fused combination starter with on-off pushbuttons – combination high and low pressure safety cutout and oil pressure failure switch – shell and tube type condenser, water cooled, steel shell and copper tubes 90°F (32.2°C) max. water, .0005 ft² °F hr/Btu (0.000088 m² °C/W) fouling – oil separator and float valve for complete oil return and compressor lubrication – unit factory assembled; mounted on and piped to pumpout receiver, with necessary liquid/gas transfer valving – ready for field piping to chiller unit. All electrical components for NEMA-1 application.

PUMPOUT RECEIVER – Horizontal, storage type, fabricated from steel plate with formed heads – fusion welded seams – float actuated, magnetic, dial type liquid level gauge standard – integral supports for floor mounting and for factory top mounted refrigerant transfer unit – sized for full Titan™ Chiller(s) unit charge when 90% full at 90°F (32.2°C), and furnished with high capacity dual relief valves assembled in series with metal bursting discs for leak tightness (for field piping), in accordance with ANSI/ASHRAE Standard 15 Safety Code. Refrigerant connections: liquid transfer inlet/outlet, charging/drain, relief, other connections factory piped to transfer unit for condensed liquid drain, condenser equalizing and compressor suction/discharge gas.

PAINTING – All external surfaces cleaned and protected by one coat of Ameron Amerlock 400 dark blue epoxy paint, compatible with adhesives typically used in application of thermal insulation materials, and acoustic wrapping. Touch up and painting of the piping (which is field welded) is done by others. The control panel is factory painted ANSI 61 light gray outside and white inside.

SHIPMENT – All component connections securely closed to protect mating surfaces and keep out foreign matter – compressor and all shell refrigerant circuits charged with dry nitrogen under pressure and water circuits purged with nitrogen for added protection during shipment and prior to installation – compressor/driveline/base assembly, cooler, condenser, intercooler, refrigerant transfer unit/receiver assembly, control center, refrigerant piping, refrigerant charge and miscellaneous material each shipped separately for field assembly. Skidding is not generally provided nor necessary.

SHOP DRAWINGS – Detailed Unit, piping, controls and applicable subvendor drawings will be provided for construction purposes.

INSTALLATION INSTRUCTIONS – Five (5) sets of standard literature furnished prior to installation.

INSTALLATION, OPERATING AND MAINTENANCE (IOM) INSTRUCTIONS – Necessary sets of com-
prehensive IOM manuals including custom control descriptions, reduced folded YORK Construction drawings, standard YORK publications, and sub-vendor literature will be provided in hard cover binders prior to equipment start-up.

START-UP SUPERVISION AND INSTRUCTION – Services of a factory-trained YORK representative will be furnished for five consecutive normal working day (40 hours) to advise on evacuation, leak testing, charging, adjusting, initial start-up and operation of unit; and to concurrently instruct the owner’s personnel in the proper operation of the unit — for multiple units, three additional days supervision will be furnished for each additional unit — expense allowance for one trip per unit included.

STANDARDS AND CODES

YORK Titan™ Chiller are designed, constructed and tested in accordance with the applicable portions of the latest revisions of the following nationally recognized Standards and Codes.

ARI 550 – Air Conditioning and Refrigeration Institute Standard for Centrifugal Water Chilling Packages (General Specifications, Testing and Rating).

ARI 575 – Air Conditioning and Refrigeration Institute Standard Method of Measuring Machinery Sound Within Equipment Rooms (Basis of all data presented or field testing of equipment, with relation to sound requirements.)

ARI 740 – Air Conditioning and Refrigeration Institute Standard for Refrigerant Recovery/Recycle Equipment.

ASME CODE – American Society of Mechanical Engineers Code for Unfired Pressure Vessels – Section VIII, Div. 1 (Design, construction, testing and certification of pressure vessels).

ANSI/ASHRAE 15 – American National Standards Institute / American Society of Heating, Refrigeration and Air-conditioning Engineers: Safety Code for Mechanical Refrigeration (Overall general safety requirements, relief device sizing, etc.).

ANSI-B31.5 – American National Standards Institute Code for Refrigerant Piping.

NEC – National Electrical Code (Electrical components and wiring). Also identified as ANSI-C2 and NFPA-70.

NEMA MG-1 – National Electrical Manufacturer’s Association standard for Motors and Generators (domestic U.S. motors).

OSHA – Occupational Safety and Health Administration – US Dept. HEW – YORK OM Chiller(s) comply with safety requirements. Sound data will be furnished in accordance with ARI-575 as required to permit comprehensive analysis by others for compliance with sound requirements.
TABLE 1 – STANDARD DESIGN WORKING PRESSURES (DWP)

Standard DWPs for Titan™ Chiller components have been established by YORK in accordance with applicable codes for equipment and installation application requirements for the refrigerants used as follows:

<table>
<thead>
<tr>
<th>COMPONENT DESCRIPTION</th>
<th>DWP - PSIG / (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WATER SIDE</td>
</tr>
<tr>
<td></td>
<td>R-134a</td>
</tr>
<tr>
<td>COMPRESSOR AND LUBE SYSTEM</td>
<td></td>
</tr>
<tr>
<td>M226/M326</td>
<td>180 / (1241)</td>
</tr>
<tr>
<td>M238/M338</td>
<td>180 / (1241)</td>
</tr>
<tr>
<td>M255/M355</td>
<td>180 / (1241)</td>
</tr>
<tr>
<td>Oil Cooler</td>
<td>300 / (2069)</td>
</tr>
<tr>
<td>COOLER</td>
<td>180 / (1241)</td>
</tr>
<tr>
<td>CONDENSER</td>
<td>180 / (1241)</td>
</tr>
<tr>
<td>INTERCOOLER</td>
<td>180 / (1241)</td>
</tr>
<tr>
<td>OIL RETURN UNIT</td>
<td>300 / (2069)</td>
</tr>
<tr>
<td>REFRIGERANT TRANSFER UNIT</td>
<td></td>
</tr>
<tr>
<td>RTU-10</td>
<td>250 / (1724)</td>
</tr>
<tr>
<td>PUMPOUT STORAGE RECEIVER</td>
<td></td>
</tr>
<tr>
<td>REFRIGERANT PIPING</td>
<td></td>
</tr>
<tr>
<td>Suction, Discharge, Interstage &</td>
<td>180 / (1241)</td>
</tr>
<tr>
<td>Hot Gas</td>
<td></td>
</tr>
<tr>
<td>Refrigerant Transfer</td>
<td>225 / (1531)</td>
</tr>
<tr>
<td>AUXILIARY WATER</td>
<td></td>
</tr>
<tr>
<td>Gear Oil Cooler</td>
<td>150 / (1034)</td>
</tr>
<tr>
<td>Motor Cooling Coil</td>
<td>150 / (1034)</td>
</tr>
<tr>
<td>Aux. Water Piping</td>
<td>150 / (1034)</td>
</tr>
</tbody>
</table>

* Including ASME Code exemptions allowed.

Higher refrigerant side DWPs will be utilized as required by special application requirements such as unusually high ambient or condensing temperature (above 110°F / 43.3°C), heat recovery, outdoor installation, etc.

Higher water side DWPs (e.g. 200 PSIG / 1379 kPa; 300 PSIG / 2069 kPa, etc.) are available for specific job requirements.

TABLE 2 – STANDARD FACTORY TEST REQUIREMENTS

Titan™ Chiller are under the constant surveillance of the YORK Quality Control and Inspection program, conforming to ISO 9001 requirements, to ensure compliance with YORK Engineering requirements, as well as the applicable Standards and Codes – assurance of the quality and performance expected of heavy duty industrial type equipment. The following listing outlines the primary testing and related procedures used by YORK (DWPs per Table 1).

A. Compressors are tested as follows:

1. Hydrostatic (water with rust inhibitors) strength test of machined compressor casing and sump (before internal assembly) at 1.5 x DWP, followed by cleaning and drying procedures.
2. Each impeller is individually balanced.
3. Overspeed test of individual impellers at 1080 FPS (approximately 2.0 x design RPM).
4. Rotor dimensions are checked and logged.
5. Mechanical and electrical shaft runout is checked at the location of any proximity probes (optional), while the rotor is on V-blocks.
6. Static and dynamic balance (at reduced speed) with the pair of impellers assembled on the rotor shaft to levels given on the compressor drawing.
7. Air run-in test of the complete compressor assembly for one-half hour at 1.0 x design RPM. During the air-run test, data is measured and recorded for suction & discharge pressures and
temperatures, balance piston interstage pressures, lube oil temperatures and pressures, and vibration probe readings (if furnished). Oil leakage from the shaft seal is monitored and compared to established maximums.

8. For turbine driven compressors, at the end of the run-in period, the compressor speed is brought up to the turbine trip speed (usually 110% of design) for a short period and then tripped.

9. After the air run-in, the shaft seal, journal bearings (2), and thrust bearings are removed and visually inspected for unusual wear or deep scratches which might indicate a problem. The oil filter cores are also removed, and cut apart to inspect for metal shavings. If no problems are found, the bearings and seal are reassembled, and the compressor is given a brief re-run to prove the mechanical integrity of the assembly.

10. Refrigerant (HCFC-22 and air mixture) leak test of the assembled compressor and self-contained lubrication system at 1.0 x DWP.

11. Evacuation of complete compressor/lube system assembly to 3 mm absoluted, followed by a 2 hour holding period. Pressure rise may not exceed 2.6 mm over the 2 hours.

12. Shipping closures are installed. Then the compressor is evacuated to 10-12" (254-305 mm) Hg. vacuum, and charge with 5 to 7 PSIG (34.4 to 48.3 kPa) of dry nitrogen for protection.

B. Shells (cooler, condenser, RTU condenser) are tested as follows:

1. Hydrostatic (water) strength test of shell side (before tubing) at 1.5 x shellside DWP, followed by cleaning and drying procedures.

2. Pneumatic (air) pressure strength test of shell side (after tubing) at 1.25 x DWP.

3. Refrigerant and air leak test of shell side at 1.0 x DWP after tubing.

4. Air pressure strength test of tube side at 1.25 x DWP (hydrostatic test at 1.5 x DWP is used if tube side DWP is higher than shell side), followed by cleaning and drying procedures.

5. Refrigerant leak test of tube side at 100 PSIG (690 kPa), following final assembly of covers and closures.

6. Evacuation of shell side to 3 mm absolute – followed by 30-minute holding period. Pressure rise may not exceed 0.35 mm.

7. Refrigerant sides of shells sealed, then charged to 3 - 5 PSIG (20.7 - 34.5 kPa) dry nitrogen for shipping. Water sides purged with dry nitrogen, then sealed for shipping.

C. Intercooler, pumpout receiver and oil separator (return unit) are tested as follows:

1. Hydrostatic test of shells at 1.5 x DWP, followed by cleaning and drying.

2. Air leak test at 1.0 x DWP.

3. Shell side is evacuated to 3 mm Hg. absolute, and held for 30 minutes during which time the pressure rise may not exceed 0.35 mm.

4. The shell side is then given a 5-7 PSIG (34.5 - 48.3 mm) charge of nitrogen for shipment.

D. Refrigerant Transfer Unit and assembled Pumpout Unit or Oil Return Unit:

1. Hydrostatic (water) or air pressure strength test of machined compressor casing (before internal assembly) at 1.5 x DWP followed by cleaning and drying procedures, as required.

2. Refrigerant and air leak test of complete refrigerant transfer unit and oil return unit assemblies at 1.0 x DWP.

3. Refrigerant and air leak test of complete refrigerant transfer unit/pumpout receiver assembly and piping at 1.0 x DWP.

4. Assemblies sealed, then charged to 3 - 5 PSIG (20.7 - 34.5 kPa) dry nitrogen for shipping.

E. Control Centers are tested as follows:

1. Calibration of pressure and temperature sensors which may be shipped loose with the panel (does not include compressor or driver mounted devices).

2. Functional bench test of completed control assembly to confirm proper control settings, operation and sequence versus the Schematic Wiring diagram. Alarm and trip settings of all available safeties are checked. Function of the microprocessor programming is simulated and checked.

3. Control center sealed for shipping.
MODIFICATIONS AND ACCESSORIES

The following Modifications to, or Accessories for use with, YORK Titan™ Chillers are available at additional cost.

ALTERNATE DRIVERS – High voltage induction motors (11 kV to 13.8 kV), special motor enclosures such as TEWAC or WPII, and synchronous motors may be substituted. Direct driving condensing or non-condensing steam turbines may be applied. Gas turbines can be offered. Natural gas or diesel engines may be used with soft clutch/coupling and speed increasing gear. All such offerings require significant coordination and engineering effort. All drivers should be capable of sustained operation of at least 105% of the compressor design horsepower (kW), including speed increaser/decreaser gear, if applicable.

YORK FREE COOLING FEATURE – Permits significant operating cost savings through use of unit to produce 30% to 60% design capacity without operating compressor during fall, winter, spring periods when available condenser water temperature is lower than chilled water temperature needed to meet co-existing cooling load requirements.

Includes necessary component modifications and material for field piping of bypass line(s) to provide free flow of refrigerant gas/liquid between cooler and condenser; with Normal/Free Cooling selector switch, simple manual bypass valve(s), and necessary changeover controls to prevent compressor start-up, and fully open compressor PRV and hot gas valve for additional flow area. Automatic bypass valves available – pneumatically operated.

Free cooling feature does not require refrigerant pumps, special spray header arrangements, or additional refrigerant charge.

ALTERNATE OR DUAL COMPRESSOR OIL COOLERS – Factory mounted and piped to suit unusually high coolant temperatures, increased fouling, alternate tube materials or minimum tube diameters and/or higher water side DWP.

FIELD MOUNTED DRIVELINE – Provisions for mounting and alignment of driveline components and/or fabrication of oil cooler water piping at time of field installation.

CONCRETE DRIVE FOUNDATION (option) – Drive component soleplates and anchor bolt assemblies can be offered for systems on grade where preferred in lieu of the drive base assembly. The driveline concrete pad would have multiple elevations to suit compressor and driver height variations. YORK would provide basic outline and pad elevation drawings. Detailed foundation design, materials, re-bar and grouting are by others.

DRIVE BASE BOLTED (NO SPRINGS) – Provides standard structural base but without springs or mounting brackets. If desired, and adequate foundation details are provided prior to bid, YORK can provide anchor bolt assemblies shipped loose in advance of the unit for embedding in the concrete. Shimming and grouting at assembly are by others.

SEISMIC REQUIREMENTS – YORK can offer seismic designs where specified for hold down reaction forces. YORK is not prepared to offer operability guarantees during or immediately after a seismic event. Where seismic concerns are anticipated, the chiller should be bolted to the foundation.

SOUND TREATMENT – Acoustic Insulation may be provided by others, or provided loose by YORK for field application. Alternate low noise motor, gear or turbine driver options may be available. Acoustic driveline or component enclosures are also available.

TUBE GAUGES – Alternate 22 BWG (.028 in. / .71 mm nom. wall) tube wall thickness in lieu of basic 20 BWG (.035 in. / .89 mm nom. wall) copper tubes for condenser and/or cooler. Heavier tube wall thickness 19 BWG (.042 in. / 1.067 mm nom. wall, etc.) not recommended as they preclude use of cost-effective internal wall enhancements.

TUBE AND/OR TUBE SHEET MATERIALS AND/OR WATER BOX COATING – For condenser and/or cooler for protection against aggressive water conditions. Alternate cupro-nickel or titanium tubes can be provided in lieu of standard copper. Tube sheets may be of the clad type and must be used in conjunction with bolted-on water boxes. A coal tar epoxy coating (International Coatings Intertuf 132 HS) may be applied to bolted boxes or to tubesheet and integral box plus end covers. Stainless steel pass baffle and auxiliary couplings plus special grinding of welds is used.

SACRIFICIAL ZINC ANODES with mounting hardware for condenser and/or cooler corrosion protection.

BOLTED TYPE MARINE WATER BOXES – Boxes which are bolted to the tube sheet (rather than welded) are available where needed due to tube sheet cladding requirements, or in some cases to meet strict rigging weight limitations. In such cases removal of the water-boxes for shipment can be offered.
HIGHER WATER CIRCUIT DWP – Condenser and/or cooler water circuit(s) DWP higher than the standard 150 PSIG (1034 kPa) DWP.

HINGED WATERBOX COVERS – Where overhead crane or other alternate lifting facilities are not available, hinges can be furnished on the cooler and/or condenser waterbox end covers at one or both ends of the heat exchangers.

TWO PASS / ONE PASS EVAPORATOR – An extra nozzle can be added to the return end of an evaporator waterbox. Customer piping and valving can be arranged to double the water flow in one pass mode during off-season when fewer plant chillers are running, but high flow is needed to meet the building load and circulation requirements.

ZERO LOAD HOT GAS BYPASS – Sized for operation to 0% load for critical industrial or process application.

SPECIAL APPLICATIONS – Comparable OM Chiller(s) available for air cooled condensing, brine cooling, heat recovery or heat pump applications. These may involve use of a three stage compressor for higher head applications.

OUTDOOR AND/OR HAZARDOUS DUTY APPLICATIONS – Necessary unit, control and control center modifications for Outdoor (NEMA-3 only) and/or Hazardous Duty (NEMA-7 or 9) application in lieu of standard NEMA-1 construction. Suitable alternate surface preparation and protective coating systems also available.

VIBRATION MONITORING – Shaft sensing proximity type probes and proximitors on driveline components and monitoring equipment in the chiller panel. Bently-Nevada 3300RAM system on compressor and 3300 system on driver components.

EXTERNAL CONTROLS – (REQUIRED FOR NORMAL UNIT OPERATION) Available separately for field mounting, piping and/or wiring: Coolers and condenser water flow switches or pressure differential switches. Water or steam flow measuring equipment of appropriate accuracy shipped loose for installation in an agreed upon straight run of piping connected to the chiller, for use as continuous control input parameter and/or for use in field testing.

BUILDING MANAGEMENT SYSTEMS – YORK can offer complete plant control systems. Assistance in interfacing the chiller microprocessor to existing customer control schemes may also be available at extra cost – contact YORK with specific requirements.

REFLEX REFRIGERANT LIQUID LEVEL GAUGE GLASS(ES) with ball check valves for Evaporator and/or Pumpout Receiver.

VENT AND DRAIN valves for waterboxes.

MULTIPLE UNIT PUMPOUT RECEIVER – Pumpout receiver sized to hold the combined charges of two or more OM Chillers in multiple unit installations (common refrigerant).

USE OF EXISTING PUMPOUT UNIT – Where a customer has an existing pumpout unit available to serve the new chillers or new chillers with existing chillers utilizing the same Refrigerant.

FIELD PERFORMANCE TEST – Services of a factory engineer or independent consultant to supervise a field performance test. Various levels of instrumentation can be offered by YORK.
The following discussion is a user guide in the application and installation of Titan™ chillers to ensure the reliable, trouble-free life for which this equipment was designed. While this guide is directed towards normal, water-chilling applications, the YORK sales representative can provide complete recommendations on other types of applications.

SCOPE

The Titan™ Chiller is a field-erected unit. Cooler, condenser, intercooler, driveline/base assembly and chiller panel are shipped as separate components. Piping materials are supplied by YORK for interconnection of the components, but must be field cut/fit/welded/assembled by others in accordance with ANSI B31.5 Piping Code requirements using qualified welders. Interconnecting control wiring from chiller components to the free standing panel is by others. All high and medium voltage power wiring is also by others. Relief vent piping is by others. Water connections to the cooler, condenser and to the oil cooler water header is by others, as is water box vent & drain piping.

LOCATION

Titan™ chillers are balanced to a very low level of vibration, and when installed on spring isolators may generally be located at any level in a building where the construction will support the total system operating weight. However, it is not recommended that the chillers be placed directly over any office or retail space. Chillers bolted and grouted to the foundation should be on grade or on a robust structure in a dedicated equipment room. The unit site must be a floor, mounting pad or foundation which is level within 1/4" (6.4 mm) and capable of supporting the operating weight of the unit.

Sufficient clearance to permit normal service and maintenance work should be provided all around and above the unit. Additional space should be provided at one end of the unit to permit cleaning or replacement of cooler and condenser tubes as required. A doorway or other properly located opening may be used.

The chiller should be installed in an indoor location where temperatures range from 50°F to 105°F (10°C to 40°C).

WATER CIRCUITS

FLOW RATE — For normal water chilling duty, cooler and condenser flow rates are permitted to any velocity level between 3-1/3 fps and 12 fps (1.01 mps and 3.65 mps). Practical pressure drop limitations (50 Ft. /149 kPa for two-pass) will generally limit flow before a 12 fps (3.65 mps) tube velocity is reached. Flow should ideally be maintained constant at all loads, however variable flows may be considered as discussed under Chilled Water and Condenser Water, following.

TEMPERATURE RANGES — For normal water chilling duty, leaving chilled water temperatures may be selected between 40°F (4.4°C) and 50°F (10°C) for water temperature ranges between 3°F (1.6°C) and 20°F (11.1°C). Leaving water temperatures below 40°F (4.4°C) and down to 36°F (1.6°C) are offered, but may require extra precautions to protect against tube freeze-up.

WATER QUALITY — The practical and economical application of liquid chillers requires that the quality of the water supply for the condenser and cooler be analyzed by a water treatment specialist. Water quality may affect the performance of any chiller through corrosion, deposition of heat-resistant scale, sedimentation or organic growth. These will adversely affect chiller performance, and increase operating and maintenance costs. Normally, performance may be maintained by corrective water treatment and periodic cleaning of tubes. If water conditions exist which can not be corrected by proper water treatment, it may be necessary to provide a larger allowance for fouling, and/or to specify special materials of construction.

GENERAL PIPING — All chilled water and condenser water piping should be designed and installed in accordance with accepted piping practice. Chilled water and condenser water pumps should be located to discharge through the chiller to assure positive pressure and flow through the unit. Piping should include offsets to provide flexibility and should be arranged to prevent drainage of water from the cooler and condenser when the pumps are shut down. Piping should be adequately supported and braced independent of the chiller to avoid the imposition of strain on chiller components. Hangers must allow for alignment of the pipe. Isolators in the piping and in the hangers are highly desirable in achieving sound and vibration control.

CONVENIENCE CONSIDERATIONS — With a view to facilitating the performance of routine maintenance work, some or all of the following steps may be taken by the purchaser. Cooler and condenser water boxes are equipped with plugged vent and drain connections. If desired, vent and drain valves may be installed with or without piping to an open drain. Pressure gauges with stop cocks, and stop valves, may be installed in the inlets and outlets of the condenser and chilled water lines as close as possible to the chiller. An overhead monorail or
beam may be used to facilitate servicing the shells and/or
driveline, or hinged water box covers may be desirable.

CONNECTIONS – The standard chiller is designed for
150 PSIG (1034 kPa) design working pressure in both
the chilled water and condenser water circuits. The
connections (water nozzles) to these circuits are
furnished as flange-faced bosses, suitable for flanged or
direct-welded pipe connection (mating flanges not
included). All water piping should be thoroughly cleaned
of all dirt and debris before final connections are made to
the chiller.

CHILLED WATER – The chilled water circuit should
be designed for constant flow.

Variable chilled water flow in the range between
minimum flow of 3-1/3 fps (1.01 mps) (4-3/4 (1.44 mps),
preferred) to minimize possibility of freezing; and
maximum flow at 50 ft. (149 kPa) pressure drop (2-
pass); will normally have minimal effect on unit
efficiency, as long as the rate of change does not
adversely affect the ability of the chiller control system to
maintain the desired leaving chilled water temperature.

A flow switch must be installed in the chilled water line of
every unit. The switch must be located in the horizontal
piping close to the unit, where the straight horizontal runs
on each side of the flow switch are at least five pipe
diameters in length. The switch must be electrically
connected to the chilled water interlock position in the unit
control center. Pressure differential type flow switches
may alternatively be used. A water strainer of maximum
1/8" (3 mm) mesh must be field-installed in the chilled
water inlet line as close as possible to the chiller. If located
close enough to the chiller, the chilled water pump may be
protected by the same strainer. The flow switch and
strainer assure chilled water flow during unit operation.

The loss or severe reduction of water flow could seriously
impair the chiller performance or even result in tube
freeze up.

CONDENSER WATER – The chiller is engineered for
maximum efficiency at both design and part load
operation by taking advantage of the colder cooling tower
water temperatures which naturally occur during the
winter months. Appreciable power savings are realized
from these reduced heads. Variable (reduced) condenser
water flow to minimize pumping costs is acceptable, but
should be carefully evaluated against the increased
chiller power requirements resulting from the increased
temperature of water leaving the condenser (higher
condensing temperature). Exact control of condenser
water temperature, requiring an expensive cooling tower
bypass, is not necessary for most applications.

The expansion devices are sized to perform at full load
capacity, with a minimum entering condenser water
temperature of 65°F (18.3 °C), with a leaving chilled
water temperature at design setting. The expansion
devices can be oversized to support full load capacity at
ECWT as low as 55°F (12.8°C).

At initial startup, entering condensing water temperature
may be equal to the standby chilled water temperature.
Cooling tower fan cycling will normally provide adequate
control of entering condenser water temperature on
most installations.

MULTIPLE UNITS

SELECTION – Many applications require multiple units
to meet the total capacity requirements as well as to
provide flexibility and some degree of protection against
equipment shutdown. There are several common unit
arrangements for this type of application. The Titan™
chiller has been designed to be readily adapted to the
requirements of these various arrangements.

PARALLEL ARRANGEMENT (Refer to Fig. 2) –
Chillers may be applied in multiples with chilled and
condenser water circuits connected in parallel between
the units. Assuming two units of equal size, each will
reduce in capacity as the load decreases to about 40% of
the total capacity, at which point one of the units will
be shut down by a sequence control.

FIG. 2 – PARALLEL COOLERS PARALLEL CONDENSERS
Assuming chilled water flow to the inoperative unit is stopped by pump shutdown and/or a closed valve, the remaining unit will pick up the total remaining load and continue to reduce in capacity as the load decreases. The unit will cycle off on the low chilled water temperature control when the load reduces below minimum unit capacity. The controls can maintain constant (± ½ °F / ±0.27°C) leaving chilled water temperature at all loads.

If chilled water continues to flow through the non-operating unit, the chilled water flowing through the operating unit will mix with the water leaving the non-operating unit to produce a common water supply to the load. Since control of the operating unit is from its own leaving chiller water temperature, the common temperature to the load will rise above the full load design temperature. This higher chilled water temperature occurs below 40% load when the dehumidification load in normal air conditioning applications is usually quite low. In such instances, this temperature rise will save additional energy.

The running time may be apportioned between both units by alternating the shutoff sequence.

SERIES ARRANGEMENT (Refer to Fig. 3) – Chillers may be applied in multiples with chilled water circuits connected in series and condenser water circuits connected in parallel. All of the chilled water flows through both coolers with each unit handling approximately one-half of the total load. When the load decreases to about 40% of the total capacity, one of the units will be shut down by a sequence control. Since all water is flowing through the operating unit, that unit will cool the water to the desired temperature.

FIG. 3 – SERIES COOLERS
PARALLEL CONDENSERS

REFRIGERANT RELIEF PIPING

Each chiller is equipped with a pressure relief valve assembly, with high capacity relief valve(s) and upstream non-fragmenting metal rupture disk(s). The purpose of the relief valve is to quickly relieve excess pressure of the refrigerant charge to the atmosphere, as a safety precaution in the event of an emergency such as a fire. They are set to relieve at an internal pressure of 1.0 x shell side DWP, are located on the cooler and are provided in accordance with ANSI/ASHRAE Standard 15 Safety Code and ASME Boiler and Pressure Vessel Code. Auxiliary relief valves are also provided on the Oil Return Unit, Refrigerant Transfer Unit, and RTU Condenser. On special applications other relief valves may be provided.

Sized to the requirements of applicable codes (ANSI/ASHRAE 15 and local codes), vent line(s) must run from the relief device(s) to the outside of the building. This refrigerant relief piping must include a cleanable, vertical-leg dirt trap to catch vent-stack condensation. Vent piping must be arranged to avoid imposing a strain on the relief connection and should include one flexible connection.

Relief valves must be provided in the customer piping for ASME code water box pressure relief.

SOUND AND VIBRATION CONSIDERATIONS

A Titan™ chiller has high speed rotating equipment and high energy added to the gas flow which may contribute to airborne noise in an equipment room. There are available options to reduce the chiller noise levels.

- Acoustic insulation treatment applied to the condenser shell surface, compressor discharge line, and compressor top half.
- Low noise driver options.
- Use of refrigerant liquid injection to the compressor last stage reduces noise levels, but lowers cycle efficiency and adds to compressor horsepower requirement.
- Partial or complete driveline sound enclosure. Rigid models with doors and ventilation, or models with sliding side “sound curtains”.

Titan™ chiller sound pressure level ratings will be furnished on request.

Titan™ chiller vibration levels are generally very low. YORK standard 1” (25 mm) spring isolator mounting is recommended for upper-floor installation.

Control of sound and vibration transmission must be taken into account in the equipment room construction as well as in the selection and installation of the equipment.
THERMAL INSULATION

No appreciable operating economy can be achieved by thermally insulating the chiller. However, the chiller’s cold surfaces should be insulated with a vapor barrier insulation sufficient to prevent condensation. Thermal insulation using an appropriate material is field applied by others. The cooler, suction line, intercooler, interstage line and certain other refrigerant lines have cold surface temperatures which should be insulated. The oil return unit should be insulated to retain warmth. If insulation is applied to the water boxes, the water box cover insulation must be readily removable to permit access to the tubes for routine cleaning and maintenance.

If the Free Cooling capability of a chiller is being utilized, anti-condensation insulation of the refrigerant condenser and water boxes should also be considered.

VENTILATION

The ANSI/ASHRAE Standard 15 Safety Code for Mechanical Refrigeration requires that all machinery rooms be vented to the outdoors utilizing mechanical ventilation by one or more power-driven fans. This standard, plus National Fire Protection Association Standard 90A, state, local and any other codes should be checked for specific requirements. Since the Titan™ chiller motors are air-cooled, ventilation must allow for the removal of heat from the motor.

OXYGEN DEPLETION DETECTION

As with any modern refrigeration system, provisions for oxygen depletion detection should be provided in the overall project.

ELECTRICAL CONSIDERATIONS

MOTOR VOLTAGE – Medium (2300-6600 volt) and high (11 kV-13.8 kV) voltage standard motors are furnished with three leads. Six leads can be brought out when specified, for differential protection or for testing purposes. Motor circuit conductor size must be in accordance with the National Electrical Code, or other applicable codes, for the motor full load amperes (FLA). Flexible conduit should be used for the last several feet to the chiller in order to provide vibration isolation. Motor horsepower, service factor, voltage, frequency, FLA, LRA and other information is stamped on the motor nameplate in accord with NEMA MG-1 requirements. Running voltage variation is ± 10 percent. A maximum 10% dip in supply voltage on starting will be assumed, unless otherwise specified.

STARTERS – The Titan™ chillers are available for use with stand alone electro-mechanical starters. Reduced voltage primary reactor and auto-transformer starters are commonly utilized, to reduce starting line current and provide longer drivetrain life due to lower starting stress. Across-the-line starters may be used if the power system is sufficiently “stiff”. Reduced voltage starters must be coordinated with the motor driver. Microprocessor based motor protective relays are offered in a standard starter. Control interface must be coordinated with the YORK chiller control panel.

POWER STUDY – Large motor systems have a major impact on a plant electrical system. An Electrical Power System Coordination and Relay Setting study should be performed by others to ensure a reliable and safe system. The study should analyze coordination of motor protection relay, starter power fuses, and upstream fuses and safeties. The study would recommend safety settings of the motor protection relay. Also, the study should examine short circuit fault conditions and voltage dip at the utility and at the motor terminals. YORK will provide relevant motor information, and other relevant data within our scope for use in this study by others.

COMRESSOR MOTOR POWER SUPPLY – Electrical power wire size to the chiller is based on the minimum unit ampacity. The National Electrical Code defines the calculation of ampacity, as summarized below. More specific information on actual amperage ratings will be supplied with the submittal drawings.

Three-lead type of starting: (Across-the-Line, Autotransformer and Primary Reactor)

Minimum circuit ampacity per conductor (1 of 3):
Ampacity = 1.25 x compressor motor amps.

Power fuses are sized by the starter manufacturer, based on motor full load amps, service factor and locked rotor amps. Changes to fuse size can be coordinated based on upstream fuses, at the approval stage, by those undertaking the Power Study advising YORK in writing.

CONTROLS – A 115 volt, single phase, 60 or 50 Hertz 5 kVA power supply must be furnished to the chiller. This may be included from the electro-mechanical starter, or from separate source. If specified, the microprocessor based component power can be separated from the heaters for power by a 15 amp UPS system.

A clean filtered dry pneumatic air supply of 4 to 5 SCFM (1887 to 2359 cc/s) at 80 to 100 PSIG (312 to 390 kPa).
is required for the control actuators. This is to be piped to a common 1/2” (13 mm) connection point near the compressor Pre-rotation Vane Actuator. Copper tubing and regulators for other pressures are furnished by YORK, loose for field installation.

COPPER CONDUCTORS – Only copper conductors should be connected to compressor motors and starters. Aluminum conductors have proven to be unsatisfactory when connected to copper lugs. Aluminum oxide, and the difference in thermal conductivity between copper and aluminum, cannot guarantee the required tight connection over a long period of time.

CAPACITORS – Capacitors can be applied to a chiller for the purpose of power factor correction. The capacitors should be located on the load-side of the starter. The capacitors must be sized and installed to meet the National Electrical Code and be verified by YORK. Motor no-load kVA must not be exceeded. Capacitors should not be installed at the motor terminals when zone differential protection (6 CT method) is used.

OIL PUMP POWER SUPPLY – A separate 3-phase power supply is required for the field mounted separate compressor and gear auxiliary oil pump starters (standard fused combination starter, NEMA-1 enclosure). Auxiliary starters can alternatively be by the customer from a Motor Control Center, with local disconnect installed within sight of the pump motors.

FIELD PERFORMANCE TESTING

The field erected Titan™ Chiller does not fall within the scope of the ARI 550 Certification program. Some customers may wish to conduct a field performance test of the chiller in accordance with ARI 550 procedures to verify the agreed upon full load design performance. Acceptance tests, if required, must be run prior to Beneficial Use of the chiller. Responsibility for instrumentation and its proper installation, must be clearly defined in the project specifications in accordance with tolerances defined in the ARI 550 standard. Such devices must be traceable to the National Institutes of Standards and Technology – NIST (formerly NBS – National Bureau of Standards). Flow devices must be flow tested, and must be installed to the manufacturer’s specifications on upstream and downstream straight pipe run. The customer is responsible to ensure adequate steady state load is available at design conditions; and agrees to provide the necessary operating utilities during the test. Contact YORK for more details on Field Performance Testing. YORK should be a party to all test planning and execution.
YORK Model OM Millenium chillers are available with a broad range of microprocessor-based control centers to meet every level of need.

BASIC YORK CONTROL CENTER – Features YORK SDC-72 microprocessor with a two-line, 80-character vacuum fluorescent display. The panel is capable of communicating with YORK Building Automation Systems software, and a number of the industry standard protocols. The panel is available for wall or bracket mounting, or in a free-standing, floor-mounted enclosure, all front accessible.

BASIC YORK CONTROL CENTER WITH COLOR GRAPHICS – Features Basic Panel plus YORK’s Facility Manager with a Windows-based Graphic User Interface (GUI). Color graphic displays include, as a minimum: Power-up, Screen List, Start-up/Lubrication, Main Refrigerant/Water Flow Diagram, Manual/Automatic Control, PID Tuning, Lube System Status, Refrigerant and Water Status, Miscellaneous Operating Status, and Alarm Status. This panel is capable of communicating with YORK Building Automation Systems software, and a number of other industry standard protocols. The panel is available for wall or bracket mounting, or in a free-standing, floor-mounted enclosure, all front accessible.

FLOOR-MOUNTED, PLC-BASED CONTROL CENTER – Features Allen-Bradley PLC 5/20 with PanelView color graphic display of all data and operating conditions, comparable to Basic Panel with Graphics. The panel is capable of communicating with the A-B Data Highway, and a number of the industry standard protocols. The panel is available in a free-standing, floor-mounted rear-access enclosure.

Each of this spectrum of control centers listed above provides display of all operating and protective parameters, factory mounted and wired, in upright, rugged steel, NEMA-1 enclosures, with locked full-height access door(s). The Basic YORK Control Centers can be furnished for bracket or wall mounting. Panels are finish-painted with ANSI 61 light gray exterior and white enamel inside.

The control centers contain all necessary controls and control logic to provide stand-alone automatic start-up, fail-safe fully automatic operation, electronic capacity control and safety protection of the chiller unit, speed increaser gear/electric motor drive. They also provide for automatic pre-lube and post-lube operation of the speed increaser gear and compressor auxiliary oil pumps (AOP); and operation of the AOPs during any low pressure lube condition. Controls are also included for automatic control of compressor capacity to limit maximum motor power consumption, manually adjustable 100% to 40% of chiller capacity.

Control centers are 100% electronic/electric, with all values displayed on the face of the panel. Refrigerant, oil and bearing temperatures and/or pressures, and control air pressures, are all to be electronically monitored from locally mounted RTDs with transmitters and pressure transducers. Also to be monitored are pre-rotation vane, high pressure liquid valve, interstage gas valve, and hot gas valve signals; drive motor power requirements; and chilled and condenser water flows and temperatures.

The control centers also include an Emergency Stop button, bypassing all controls, mounted on the front of the panel, together with the data display, and Start, Stop and Power Failure/Reset buttons. A separate hard wired high pressure cutout, remotely mounted at the compressor, will be provided in accordance with ASHRAE/ANSI Std 15 Safety Code requirements.

All controls are to be arranged for easy access – internally wired to clearly marked terminal strips for external (field) wiring connections; wiring color coded black (control), white (neutral), and green (ground), with each wire numerically identified at both ends. All low-voltage discrete and analog input wiring to the panels shall be #18 AWG/2-conductor shielded cable, color coded red and black. A copy of the unit wiring diagram is to be provided in a pocket inside the enclosure door.

The control center is to be supplied a 5 kVA 120 volt single phase 60 or 50 Hertz power supply (by others). The panel is to be all electric. The pre-rotation vanes, high pressure liquid valve, interstage gas valve, and hot gas valve are all to be electronically monitored and pneumatically actuated, and are to be supplied a total of 4-5 SCFM (1887 to 2359 cc/s) of clean dry filtered instrument air at 80 to 100 PSIG (312 to 390 kPa) pressure (by others). All displays are to be in English or (Metric) units of measure.

CUSTOM CONTROL CENTERS

Custom-designed control centers can be furnished to meet the unique requirements of individual projects.

OPTIONAL VIBRATION MONITORING – Proximity vibration monitoring of driveline components (compressor/gear/motor) based on Bently-Nevada Series 3300 can be provided in any of the control centers. In the case of the YORK SDC-72-based panels, and custom panels, a Bently-Nevada 3300 Monitor will be incorporated in a larger size enclosure. The Allen-Bradley based panel will utilize the customized B-N/2201 system, incorporating the vibration monitoring as an additional color-graphic display screen.

In all cases, necessary proximity probes, cables and proximitors must be provided as part of each of the driveline components to be monitored.

1Control Centers are described for electric motor drive. Comparable Control Centers detailed to the unique requirements of steam turbine, and natural gas engines or turbine drives are also available.
<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>SIGNAL</th>
<th>STANDARD W/O GRAPHICS</th>
<th>STANDARD WITH GRAPHICS</th>
<th>PLC WITH GRAPHICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Motor Kilowatts</td>
<td>4-20mA</td>
<td>YES1</td>
<td>YES1</td>
<td>YES1</td>
</tr>
<tr>
<td>2 Chilled Water Flow</td>
<td>4-20mA</td>
<td>YES2</td>
<td>YES2</td>
<td>YES2</td>
</tr>
<tr>
<td>3 Condenser Water Flow</td>
<td>4-20mA</td>
<td>YES2</td>
<td>YES2</td>
<td>YES2</td>
</tr>
<tr>
<td>4 Remote Chilled Water Set Point</td>
<td>4-20mA</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>5 Remote Demand Limiter</td>
<td>4-20mA</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>6 Evaporator Refrigerant Pressure</td>
<td>4-20mA</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>7 Condenser (compressor discharge) Pressure</td>
<td>4-20mA</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>8 Intercooler Pressure</td>
<td>4-20mA</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>9 Compressor Supply Oil Pressure</td>
<td>4-20mA</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>10 Compressor Oil Sump Pressure</td>
<td>4-20mA</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>11 Compressor Balance Piston Pressure</td>
<td>4-20mA</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>12 Gear Supply Oil Pressure</td>
<td>4-20mA</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>13 Gear Shaft Oil Pressure</td>
<td>4-20mA</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>14 Chilled Water Leaving Temperature</td>
<td>4-20mA</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>15 Chilled Water Entering Temp.</td>
<td>4-20mA</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>16 Condenser Water Entering Temp.</td>
<td>4-20mA</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>17 Condenser Water Leaving Temp.</td>
<td>4-20mA</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>18 Evaporator Refrigerant Liquid Temp.</td>
<td>4-20mA</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>19 Compressor Refrigerant Discharge Temp.</td>
<td>4-20mA</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>20 Compressor Thrust Oil Temp.</td>
<td>4-20mA</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>21 Compressor Shaft Pump Pressure</td>
<td>4-20mA</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>22 Compressor Shaft-end Bearing Oil Temp.</td>
<td>4-20mA</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>23 Gear Supply Oil Temp.</td>
<td>4-20mA</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>24 Gear H.S. Shaft-end Bearing Temp.</td>
<td>4-20mA</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>25 Gear H.S. Blind-end Bearing Temp.</td>
<td>4-20mA</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>26 Gear L.S. Shaft-end Bearing Temp.</td>
<td>4-20mA</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>27 Gear L.S. Blind-end Bearing Temp.</td>
<td>4-20mA</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>28 Motor Shaft-end Bearing Temp.</td>
<td>4-20mA</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>29 Motor Blind-end Bearing Temp.</td>
<td>4-20mA</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>30 Subcooler Refrigerant Liquid Level</td>
<td>4-20mA</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>31 Subcooler Leaving Refrig. Liquid Temp.</td>
<td>4-20mA</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>32 Spare</td>
<td>Digital</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>33 Condenser High Refrigerant Press Switch</td>
<td>Digital (5VDC)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>34 Compressor Low Oil Press Switch</td>
<td>Digital (5VDC)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>35 Emergency Stop</td>
<td>Digital (5VDC)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>36 Starter Safety Fault Relay</td>
<td>Digital (5VDC)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>37 Compressor Motor Starter Run Interlock</td>
<td>Digital (5VDC)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>38 Compressor AOP Motor Starter Run Interlock</td>
<td>Digital (5VDC)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>39 Gear AOP Motor Starter Run Interlock</td>
<td>Digital (5VDC)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>40 Chilled Water Low D/P Switch</td>
<td>Digital (5VDC)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>41 Condenser Water Low D/P Switch</td>
<td>Digital (5VDC)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>42 Oil Separator Temp. Control Switch</td>
<td>Digital (5VDC)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>43 Compressor High Oil Temp. Switch</td>
<td>Digital (5VDC)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>44 Start Pushbutton</td>
<td>Digital (5VDC)</td>
<td>YES</td>
<td>YES</td>
<td>YES (120VAC)</td>
</tr>
<tr>
<td>45 Stop Pushbutton</td>
<td>Digital (5VDC)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>46 Remote Start / Stop</td>
<td>Digital (5VDC)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>47 Reset Pushbutton</td>
<td>Digital (5VDC)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>48 Spare</td>
<td>Digital (5VDC)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>SIGNAL</td>
<td>STANDARD W/O GRAPHICS</td>
<td>STANDARD WITH GRAPHICS</td>
<td>PLC WITH GRAPHICS</td>
</tr>
<tr>
<td>--</td>
<td>------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>OUTPUTS – See Note 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Compressor Prerotation Vanes</td>
<td>0-10VDC</td>
<td>YES</td>
<td>YES</td>
<td>YES (120VAC)</td>
</tr>
<tr>
<td>2 Hot Gas Bypass Valve</td>
<td>0-10VDC</td>
<td>YES</td>
<td>YES</td>
<td>YES (120VAC)</td>
</tr>
<tr>
<td>3 Interstage Control Valve</td>
<td>0-10VDC</td>
<td>YES</td>
<td>YES</td>
<td>YES (120VAC)</td>
</tr>
<tr>
<td>4 Subcooler Level Control Valve</td>
<td>0-10VDC</td>
<td>YES</td>
<td>YES</td>
<td>YES (120VAC)</td>
</tr>
<tr>
<td>5 Compressor AOP Motor Starter Control</td>
<td>120VAC</td>
<td>YES</td>
<td>YES</td>
<td>YES (120VAC)</td>
</tr>
<tr>
<td>6 Gear AOP Motor Starter Control</td>
<td>120VAC</td>
<td>YES</td>
<td>YES</td>
<td>YES (120VAC)</td>
</tr>
<tr>
<td>7 Chilled Water Pump Starter Control</td>
<td>120VAC</td>
<td>YES</td>
<td>YES</td>
<td>YES (120VAC)</td>
</tr>
<tr>
<td>8 Spare</td>
<td>120VAC</td>
<td>YES</td>
<td>YES</td>
<td>YES (120VAC)</td>
</tr>
<tr>
<td>9 Compressor Motor Starter Control</td>
<td>120VAC</td>
<td>YES</td>
<td>YES</td>
<td>YES (120VAC)</td>
</tr>
<tr>
<td>10 Compressor Run Light</td>
<td>120VAC</td>
<td>YES</td>
<td>NO5</td>
<td>NO5</td>
</tr>
<tr>
<td>11 Auxiliary Cooling Water Solenoid</td>
<td>120VAC</td>
<td>YES</td>
<td>NO5</td>
<td>YES</td>
</tr>
<tr>
<td>12 Compressor Oil Heater Control</td>
<td>120VAC</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>13 Oil Separator Heater Control</td>
<td>120VAC</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>14 Compressor Auto Sump Vent Valve</td>
<td>120VAC</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>15 Gas Supply to Oil Eductor Solenoid</td>
<td>120VAC</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>16 Liquid Injection Solenoid Valve</td>
<td>120VAC</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>17 Chiller Alarm Light</td>
<td>120VAC</td>
<td>YES</td>
<td>NO5</td>
<td>NO5</td>
</tr>
<tr>
<td>18 Chiller Safety Light</td>
<td>120VAC</td>
<td>YES</td>
<td>NO5</td>
<td>NO5</td>
</tr>
<tr>
<td>19 Chiller Ready to Start</td>
<td>120VAC</td>
<td>YES</td>
<td>NO5</td>
<td>NO5</td>
</tr>
<tr>
<td>20 Spare</td>
<td>0-10VDC</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>21 Spare</td>
<td>0-10VDC</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>22 Spare</td>
<td>120VAC</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>23 Spare</td>
<td>120VAC</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>24 Spare</td>
<td>120VAC</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
</tbody>
</table>

NOTES:

1. In all cases, a separate kilowatt transducer is required for input to the chiller panel.
2. Chilled and condenser water flow measurement stations are all located outside of the chiller manufacturer scope of supply. Therefore they should be by others, and their design, selection, proper application and installation should be defined in the appropriate parts of the project specifications. These specifications should address the accuracy needed for the end use of the data intended. (Informational, performance test quality, etc.)
3. The specifications of the individual components monitored above (chiller components, speed increaser gear, electric drive motor, motor starter, etc.) shall make provisions for, and the supply of inputs listed above, such as pressure taps, block valves and 4-20mA transducers for pressure measurement; thermal wells with 3-wire 100 Ohm Platinum RTDs with 4-20mA Transmitters (except for motor stator) for temperature measurement; AOP starter interlocks; main drive motor starter interlocks, CTs, PTs, KW Transducer; etc.
4. The above Inputs include monitoring of motor bearing and stator temperatures, with comprehensive and sophisticated monitoring and protection of the motor provided by incorporating a microprocessor based motor protective unit (MPU), - such as Westinghouse IQ1000/IQ Data Plus II, or Multilin 269 +/MTM- in the motor starter, as previously specified, in which case monitoring of motor stator temperatures would be accomplished by the MPU. A 4-20mA signal output is also available from the above-mentioned devices.
5. On the Standard with Graphics and PLC with Graphics Panels, the 120-VAC outputs for indicating lights are spares since these function are provided on the graphic screens with the On-Off signals being transmitted over the serial interface between the controller and the PC.
Large tonnage centrifugal liquid chilling units (above 2000 tons / 7032 kWR), such as YORK Titan™ Turbomaster, and comparable competitive units, as well as their major drive components (speed increaser gears, motors, starters, steam turbines, steam condensers, gas engines, gas turbines, etc.), are based on standardized designs that are custom tailored to the unique requirements of each project.

Due to the size and weight of these large tonnage units, they are not available as factory packaged units, but rather must be shipped as a number of coordinated individual components, which must be field erected, piped, wired, evacuated and charged, insulated, painted, etc, at the jobsite. It is essential that overall project specifications reflect all of the materials and services required for a complete installation, and assign responsibilities for providing all of these materials and services.

The Guide Specifications which follow are generic in overall nature, detailing the basic chiller unit materials and services to be provided by the chiller manufacturer, as well as the additional related materials and services required, for which responsibility must be assigned as part of the overall project.

These specifications are based on:

- Unit for water cooling duty, with cooling tower water cooled condenser.
- Unit to be installed in indoor, heated, NEMA-1 environment.
- Driver to be induction motor with open drip-proof (ODP), lower sound (WP II), or totally enclosed water-to-air cooled (TEWAC), enclosure.
- Power supply to be 2400 or 4160 volts-3 phase-60 Hertz, or 3300 or 6600 volts-3 phase-50 Hertz.
- Compressor, speed increaser gear, and motor to be factory mounted and rough aligned on heavy duty welded structural steel driveline base.
- Main motor starter to be equipped with microprocessor based motor protective system.
- Chiller control system to be YORK Titan™ SDC-72 microprocessor based with 2-line / 80-character vacuum fluorescent display, or YORK’s Facility Manager Windows-based Color Graphic User Interface (GUI), or Allen-Bradley PLC 5/20 (Programmable Logic Controller) based with A-B PanelView color graphic CRT, displaying all operating, monitoring and safety functions, in a free-standing, floor-mounted enclosure. For further information, see the section on Control Centers.
- Pneumatic operation of pre-rotation vanes, high-pressure liquid valve, interstage gas valve, and hot gas valve.

Additional or alternative requirements affecting components of these specifications may require changes to other interrelated portions of the specifications – please consult your YORK representative. The following alternative requirements require special attention:

- Unit for glycol cooling duty, other than tower water cooled (sea, river, well, radiator), air cooled condensing, heat recovery, or heat pump application.
- Outdoor and/or unheated location, and other than NEMA-1 environment.
- Power supply to be 13,800 V (13.8kV)-3-60; or 11,000 V (11kV)-3-50.
- Driver to be synchronous motor, steam turbine, gas turbine, gas engine, diesel engine, etc.
- Drive components to be individually mounted on multilevel reinforced concrete foundation.
- Main motor starter to have individual protective relays for each function, not microprocessor based protective unit.
- Switchgear (circuit breakers) acting as main motor starter.
- Chiller control system other than YORK SDC-72 based, or A-B PLC 5/20-PanelView based; or requiring electro-pneumatic type with multiple individual gauges, lights, switches, monitors, annunciators, controllers, etc.
- Electric operation for pre-rotation vanes, hot gas valve, and interstage valve.
- Driveline component vibration monitoring system.

Following are detailed Guide Specifications for large tonnage unit(s) based on an induction motor drive. To complete a comprehensive specification, it is essential that the specific requirements of each project be reflected by entering appropriate data in each of the spaces (blanks), and that in the case of each OPTION, a decision be made as to whether or not the requirements of that option should be included in the specification.

Copies of this Guide Specification, as well as those for alternative drives, are available from your YORK representative:

1. **Induction Motor Drive** – including Gear, Motor and Starter
 1.1 **Standard Unit** – Induction Motor Drive – including Gear, Motor and Starter
2. **Synchronous Motor Drive** – including Gear, Motor and Starter
3. **Condensing Steam Turbine Drive** – including Condensing Steam Turbine and Steam Surface Condenser
4. **Non-condensing Steam Turbine Drive** – including Non-condensing Steam Turbine
5. **Gas Engine Drive** – including Gear, Clutch/Coupling and Gas Engine
GUIDE SPECIFICATIONS – INDUCTION MOTOR DRIVE

JOBSITE/OPERATING CONDITIONS* (ENGLISH UNITS OF MEASURE)

* Data shown in parentheses () indicates “typical” or “standard” response for data. The bold response is the “standard” input.

Furnish and install where indicated on the plans _______ (quantity) open centrifugal liquid chilling unit(s) as manufactured by YORK International (Model OM) or Carrier Division of United Technologies (Model 17DA). Unit(s) will utilize _____ (R-134a) (R-22) and will be equipped and rated in accordance with ARI Standard 550 (latest revision).

Each unit shall produce a capacity of _______ tons of refrigeration, cooling _______ GPM of _______ (water) from _______°F to _______°F when supplied with _______ GPM of condenser water at _______°F.

Equipment to be located _______ (indoors), _______ (NEMA-1), with ambient conditions of _______°F (50) minimum, to _______°F (105) maximum, altitude _______ ft. _______ (above) sea level.

Chiller maximum power consumption, including motor and speed increaser gear losses, not to exceed _______ kW (_______ kW/ton) at full load design conditions.

Electric power shall be supplied to the centrifugal compressor drive motor at _______ (2400) (4160) volts-3 phase-60 Hertz, or _______ (3300)(6600) volts-3 phase-50-Hertz, for _______ (reduced) (full) voltage starting (inrush not to exceed _______amps); with _______ (10%) voltage dip on starting. Motor speed shall be _______ (1800) (3600) RPM/60 Hz, or _______ (1500)(3000) RPM/50 Hz, synchronous. Motor enclosure shall be _______ (ODP) (WP II) (TEWAC); and if TEWAC, cooling water to be supplied at _______°F (85) _______ PSIG DWP with _______._______ (.0005) ft² °F/240°F fouling factor. Motor to develop 93% (Min) full load power factor.

Main motor starter shall be _______ (reduced) (full) voltage type in a free-standing floor-mounted NEMA _______ (1) enclosure.

Electric power shall be supplied to all auxiliary motors at _______ (460) volts-3 phase-60 Hertz; or _______ (380) volts-3 phase-50 Hertz; control power at 120 volts-1 phase- _______ (60) (50) Hertz; and control air at 80 to 100 PSIG.

The cooler tubes shall be _______ (20) BWG (_______ [.035] inches nominal wall thickness) _______ (copper). The maximum water velocity at any point in tubes shall not exceed _______ ft. per second. Pressure drop shall not exceed _______ ft. of water. Selection shall be based on _______ (.00025) Ft² °F/240°F fouling factor. Water side shall be _______ (150) PSIG Design Working Pressure.

The refrigerant condenser tubes shall be _______ (20) BWG (_______ [.035] inches nominal wall thickness) _______ (copper). The maximum water velocity at any point in tubes shall not exceed _______ ft. per second. Pressure drop shall not exceed _______ ft. of water. Selection shall be based on _______ (.00025) Ft² °F/240°F fouling factor. Water side shall be _______ (150) PSIG Design Working Pressure.

The refrigerant condenser tubes shall be _______ (20) BWG (_______ [.035] inches nominal wall thickness) _______ (copper). The maximum water velocity at any point in tubes shall not exceed _______ ft. per second. Pressure drop shall not exceed _______ ft. of water. Selection shall be based on _______ (.00025) Ft² °F/240°F fouling factor. Water side shall be _______ (150) PSIG Design Working Pressure.

Oil coolers (compressor and speed increaser); and motor cooler (if TEWAC); shall be furnished with _______ (condenser) (chilled) (city) water at _______°F (85) maximum temperature and _______ (150) PSIG Design Working Pressure based on _______ (.0005) Ft² °F/240°F fouling factor. Water pressure drop shall not exceed _______ ft. of water. (If condenser water is used, total auxiliary water circuit pressure drop, including all interconnecting piping, must be less than refrigerant condenser water pressure drop.)

Refrigerant transfer unit water cooled condenser shall be furnished with _______ (city) (chilled) (condenser) water at _______°F (85) maximum temperature and _______ (150) PSIG Design Working Pressure based on _______ (.0005) Ft² °F/240°F fouling factor. Water pressure drop shall not exceed _______ ft. of water. Refrigerant high-pressure receiver shall be sized for _______(the full refrigerant charge of _______ [1] unit), or (lbs. of refrigerant, minimum) when 90% full at 90°F, per ANSI/ASHRAE Standard 15.

Unit shall fit an overall space _______ ft. long (including tube pulling space), _______ ft. wide, _______ ft. high, but not including housekeeping or foundation pad. Necessary additional space shall be provided around the chiller for maintenance/service access (4’ front, 3’ rear and 5-6’ ends); and as required for the chiller control panel, main motor starter, and for the refrigerant transfer unit/storage receiver.

– or –
Each unit shall produce a capacity of _______ kWR of refrigeration, cooling _______ L/s of _______ (water) from _______ °C to _______ °C when supplied with _______ L/s of condenser water at _______ °C.

Equipment to be located _______ (indoors), NEMA-1, with ambient conditions of _______ °C(10), minimum, to _______ °C (40.5) maximum, altitude _______ km _______ (above) sea level.

Chiller maximum power consumption, including motor and speed increaser gear losses, not to exceed _______ kW (_______ kW/kWR) at full load design conditions.

Electric power shall be supplied to the centrifugal compressor drive motor at _______ (2400) (4160) volts-3 phase-60 Hertz, or _______ (3300)(6600) volts-3 phase-50 Hertz, for _______ (reduced) (full) voltage starting (inrush not to exceed _______ amps); with _______ (10%) voltage dip on starting. Motor speed shall be _______ (1800)(3600) RPM/60 Hz, or _______ (1500)(3000) RPM/50 Hz, synchronous. Motor enclosure shall be _______ (ODP)(WP II)(TEWAC); and if TEWAC, cooling water to be supplied at _______ °C (29.4), _______ kPa (1034) DWP with _______ (0.000088) m² °C/W fouling factor. Motor to develop 93% (Min) full load power factor.

Main motor starter shall be _______ (reduced) (full) voltage type in a free-standing floor-mounted NEMA _______ (1) enclosure.

Electric power shall be supplied to all auxiliary motors at _______ (460) volts-3 phase-60 Hertz; or _______ (380) volts-3 phase-50 Hertz; control power at 120 volts-1 phase-_________ (60)(50) Hertz; and control air at 312 to 390 kPa.

The cooler tubes shall be _______ (20) BWG (_______ [0.89] mm nominal wall thickness) _______ (copper). The maximum water velocity at any point in tubes shall not exceed _______ m/s. Pressure drop shall not exceed _______ kPa. Selection shall be based on _______ (0.000044) m² °C/W fouling factor. Water side shall be _______ (1034) kPa Design Working Pressure.

The refrigerant condenser tubes shall be _______ (20) BWG _______ (copper). The maximum water velocity at any point in tubes shall not exceed _______ m/s. Pressure drop shall not exceed _______ kPa of water. Selection shall be based on _______ (0.000044) m² °C/W fouling factor. Water side shall be _______ (1034) kPa Design Working Pressure.

Oil coolers (compressor and speed increaser); and motor cooler (if TEWAC); shall be furnished with _______ (condenser) (chilled) (city) water at _______ °C (29.4) °C maximum temperature and _______ (1034) kPa Design Working Pressure based on _______ (0.000088) m² °C/W fouling factor. Water pressure drop shall not exceed _______ kPa of water. (If condenser water is used, total auxiliary water circuit pressure drop, including all interconnecting piping, must be less than refrigerant condenser water pressure drop.)

Refrigerant transfer unit water cooled condenser shall be furnished with _______ (city) (chilled) (condenser) water at _______ °C (29.4) maximum temperature and _______ (1034) kPa Design Working Pressure based on _______ (0.000088) m² °C/W fouling factor. Water pressure drop shall not exceed _______ kPa of water. Refrigerant high-pressure receiver shall be sized for _______ (the full refrigerant charge of _______ [1] unit), or (kg of refrigerant, minimum) when 90% full at 32.2°C, per ANSI/ASHRAE Standard 15.

Unit shall fit an overall space _______ mm long (including tube pulling space), _______ mm wide, _______ mm high, but not including housekeeping or foundation pad. Necessary additional space shall be provided around the chiller for maintenance/service access (1220 mm front, 915 mm rear and 1675 ends); and as required for the chiller control panel, main motor starter, and for the refrigerant transfer unit/storage receiver.
EXTENDED OPERATING RANGE (OPTIONAL)

Unit shall be specially equipped as required to produce full rated capacity at full flow entering condenser water temperatures down to 55°F (12.8°C) without the use of condenser water flow control or bypass, or cooling tower fan cycling; so as to provide maximum unit operating economies.

FREE COOLING (OPTIONAL)

The chiller units shall be provided with a Free Cooling system for the purpose of obtaining chilled water without operation of the main driver during those periods of the year when available condenser water temperature is lower than the coexisting required chilled water temperature.

The capacity of each unit in Free Cooling operation shall be as shown in the following schedule, when supplied with design flow of condenser water and chilled water, with .00025 ft² °F hr/Btu (.000044 m² °C/W) fouling factors for both condenser and cooler:

<table>
<thead>
<tr>
<th>Capacity- Entering Condenser</th>
<th>Leaving Chilled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tons (kWR)</td>
<td>°F(°C)</td>
</tr>
</tbody>
</table>

Chiller units shall include all necessary component modifications, and material for field piping of refrigerant gas/liquid bypasses, including automatic valves, control center NORMAL OPERATION/FREE COOLING selector switch and indicating light, interlock to prevent compressor start-up during Free Cooling operation; and additional refrigerant charge, storage receiver, piping, valves and controls; as may be required for single point automatic operation and changeover between Normal and Free Cooling modes of operation.

GENERAL

Each unit shall consist of a steel driveline base assembly that includes the compressor, speed increaser gear (if required), and motor, factory mounted and rough aligned on a steel driveline base; liquid cooler; refrigerant condenser with liquid sub-cooler; intercooler (if required); refrigerant transfer unit and receiver; necessary interconnecting refrigerant pipe, valves and fittings; level adjusting spring isolators for complete unit; and floor mounted microprocessor-based, or Programmable Logic Controller (PLC) based, control panel with full multicolor graphic display CRT and membrane keypad, for use with an electric induction motor driven chilling system, all suitable for NEMA-1 application. All major components (compressor, cooler, condenser, intercooler and pumpout receiver) shall be factory leak tested, evacuated and protectively charged with nitrogen before shipment. It shall be the responsibility of the installing contractor to furnish all of the necessary labor and material to complete the installation in accordance with instructions and drawings furnished by the manufacturer.

Compressor motor starter shall be furnished for separate field mounting.

DRIVE LINE BASE/ASSEMBLY

The drive line components noted above are specified in detail below, and shall be supplied factory mounted and rough aligned on a single, rigid fabricated structural steel base, with optical leveling points, to be furnished by the chiller unit manufacturer for controlled alignment. The base shall include provision for level-adjusting, limited rise, spring-type isolators as hereinafter specified; and necessary factory assembled galvanized steel auxiliary cooling water piping and manual valves within confines of base connecting all drive line components to a common manifold, including water solenoid valve and strainer. Individual compressor and gear auxiliary oil pump motor starters with fused disconnect switches shall be furnished for field mounting and wiring on or near the driveline base.

COMPRESSOR

Compressor shall be of the open drive, single or multi-stage centrifugal type. The casing shall be of industrial construction, horizontally split to allow access to the rotor assembly. Casing design shall be such that major wearing parts (main bearings, thrust bearings, seals, and shaft oil pump) are accessible for inspection or replacement without removing upper half of the casing or disturbing compressor drive alignment. Casing shall have necessary suction, discharge and interstage flash gas connections.

Compressor impeller shaft shall be designed with sufficient rigidity to prevent vibration at any required operating speed and this operating speed shall be below the first lateral critical speed. The shaft shall be manufactured of heat treated alloy steel. Impellers shall be statically and dynamically balanced and made of material which will resist erosion, corrosion and pitting; and preserve initial impeller balance and performance characteristics. Multi-stage compressors shall include a balance piston on the last stage impeller to minimize axial thrust load on the thrust bearing.

Compressor shall include accessible precision bored aluminum alloy, or steel backed babbitt, journal bearings, and a tilting pad type thrust bearing to axially position the rotor and absorb any unbalanced thrust which may be encountered.

Compressor lubrication system shall be of the self-
contained force feed type with a pump supplying oil under pressure to journal bearings and thrust bearing, and shall include dual replaceable element 15 micron oil filters with change-over valve, a water cooled oil cooler, and a thermostatically controlled oil valve to by-pass oil cooler, maintaining desired minimum oil temperature.

Complete lubrication system shall be factory packaged. Compressor shall include a main oil pump, and an auxiliary pump, including provisions to ensure positive lubrication at all operating speeds, on start-up or shut-down, and under power failure coast-down conditions. The oil reservoir shall include heaters to minimize accumulation of refrigerant in the oil during long idle periods. Sight ports, thermometers and pressure gauges shall be supplied. Provide 3-lead, 100 ohm platinum Resistance Temperature Detectors (RTD), and junction boxes with 4-20mA transmitters,

An automatic capacity reduction control of the pre-rotation vane type shall be provided to efficiently regulate the capacity by varying the volume of refrigeration suction gas handled by the compressor, together with a suitable pneumatic operator to automatically position the pre-rotation vanes in response to a temperature control system sensing the leaving chilled water temperature. An automatic hot gas bypass with pneumatic operator shall also be furnished to assure stable performance, even under extreme or abnormal operating conditions, down to 10% capacity.

OPTIONAL – A non-contacting proximity vibration monitoring system shall be provided as detailed below following Control Center.

COUPLINGS/COUPLING GUARDS

A light-weight, non-lubricated type of high speed coupling and guard shall be furnished between the compressor and the speed increaser gear, or motor. Coupling and guard shall be accessible and easily disassembled without disturbing the compressor drive alignment.

A limited end-float, lubricated, gear type low speed coupling and guard shall be furnished between speed increaser gear (if required), and motor.

SPEED INCREASE GEAR (If required)

External speed increaser shall be sized with a 1.3 (min.) gear service factor applied to the maximum continuous power output of the motor, (Motor Nameplate HP x Motor Service Factor – NEMA Rated, or Motor Nameplate kW-IEC Rated).

High speed increasers shall be totally enclosed, double helical and be manufactured in accordance with AGMA 421.06 standard for application of 1800 or 3600 rpm motors or 5,000 feet (1,524 m) per minute pitch line velocity.

Housing shall be ruggedly designed to insure maximum rigidity, made of high tensile alloy cast iron or fabricated steel, stress relieved and machined to match the precision of the gears. Housing to have machined leveling pads, vertical jacking screws, inspection cover and oversize drain port. All housing interior surfaces to be thoroughly cleaned, shot blasted and painted prior to assembly.

Gears shall be double helical design, heat treated by through hardening or case carburizing. Gears shall be precision hobbed and shaved, or have end relief and tip relief to eliminate edge loading. AGMA minimum quality level 10 shall be checked and qualified with certification available upon request. Gears shall be designed for life expectancy of 100,000 hours based on Figure 20 and 21 in AGMA 218.01 A pressure angle of 20° is required to reduce scoring and sound.

Journal bearings shall be tapered land, split-sleeve, babbitt lined, steel backed, with thrust collars for axial loads. Bearings to be selected to meet specific speed and design load characteristics. (NOTE: Thrust loads on the high-speed shaft are normally handled by the compressor thrust bearing.)

The lubrication system shall consist of a positive displacement shaft driven pump, auxiliary oil pump, heat exchanger with thermostatically controlled oil valve to by-pass oil cooler, maintaining desired minimum oil temperature, dual replaceable element 25-micron (max.) oil filters with change-over valve, supply oil pressure gauge, oil temperature gauge and wet oil sump. Piping to be external of housing for ease of maintenance. Oil temperature 3-lead, 100 ohm platinum RTD/transmitter, and pressure transmitters, shall be furnished as detailed by the Control Center Input/Output List.

Seals are to be labyrinth type on both high speed and low speed shaft extensions and split horizontally for ease of maintenance. Gear lubrication system shall supply oil to the motor as required.

OPTIONAL – A non-contacting proximity vibration monitoring system shall be provided as detailed below following Control Center.

The prime mover shall be a squirrel cage induction motor sized to efficiently and continuously fulfill the
chiller unit compressor brake horsepower (including speed increaser, if required) and speed requirements without exceeding the motor nameplate HP (kW) rating, and the motor shall be specifically capable of continuous operation at 110% (min.) of the total chiller unit power requirements.

All equipment provided shall be manufactured in accordance with the applicable requirements established by the following codes or standards (latest revision), unless otherwise specified: “NEMA Publication No. MG-1, “Motors and Generators” ANSI C50.2, as a supplementary standard for motors. IEEE Publications temperature limits on insulating materials, rating methods, testing (IEEE-112), etc.” All material and equipment furnished shall be new free from defects of any character.

Motor shall be a horizontal, continuous duty, squirrel cage induction machine. Rating shall be for voltage and speed as previously specified; and carry a 1.15 service factor rating. Direction of rotation shall be as required by driven load and shall be prominently indicated on motor on both front and shaft sides, and be permanently affixed to each end of enclosure. Motor shall be connected to driven load by means of flexible coupling specified and provided elsewhere in these specifications.

Motor enclosure shall be (ODP-Open Drip Proof) (WPII - LoNoise) (TEWAC – Totally Enclosed Water-To-Air Cooled), as previously specified.

If TEWAC Enclosure, motor shall be totally enclosed with top mounted water to air industrial straight through heat exchanger. Heat exchanger shall be double tube type and shall incorporate adequate means of protecting electrical components from water. Inner tubes to be constructed of admiralty metal or 90/10 copper nickel, and designed for inlet cooling water temperature, Design Working Pressure, and fouling factor, as previously specified. The heat exchanger enclosure shall be arranged so all mounting hardware is external to the enclosure. Remote detection of leaks into the outer tube shall be provided by electronic leak detection devices alarming the chiller control panel.

Motor shall be premium efficiency of size and characteristics required to start the compressor, and bring it up to speed within the specified limitations; and operate the compressor at full load conditions without exceeding motor nameplate horsepower. The starting characteristics of the motor shall be as required for successful full or reduced voltage start-up of the entire unit as previously specified. Manufacturer shall guarantee inrush amperes to be not more than those specified, with the system starting voltage dip previously specified.

Motor shall be designed and fabricated to develop a minimum power factor as previously specified. If power factor correction capacitors (PFCC) are required, they are to be sized by the motor manufacturer, to be furnished by the starter manufacturer and installed in the starter enclosure.

Insulation Characteristics:

a. Winding insulation shall be IEEE Class “F”, rated for a maximum “hottest-spot” temperature of 130°C. Motor rating shall permit continuous operation at full nameplate horsepower load with temperature not exceeding 120°C (80°C rise above 40°C ambient) at 1.0 service factor as measured by the resistance method. Stator coils shall be form-wound and sealed.

b. The motor insulation system must incorporate a solvent-less “Vacuum Pressure Impregnated Epoxy”, (VPI) process. The insulation must be impregnated after the coils are wound into the stator and connections are made.

c. Coil end turns shall be securely anchored to lock up the coils, prior to impregnation.

d. Winding Temperature Sensors: Provide six, 3-lead, 100-ohm platinum RTDs imbedded in the stator coils, two per phase, at 60 degree intervals for connection to the microprocessor-based motor protective unit to be provided in the motor starter cubicle. Provide separate terminal box on motor and terminate all sensor leads therein with ring-tongue terminals under screws.

Bearings, Lubrication & Temperature Indication:

a. Bearings: Bearings shall be split sleeve, spherically (center) seated, self-aligning design. One bearing must be electrically insulated to prevent shaft electric currents. Design of bearings, housings, and brackets must permit inspection and replacement of bearings without disassembly of motor. The motor shall have horizontally split end bells.

b. Lubrication: Motor to have oil rings and oil level indication on both bearings, if required. If required due to the size and/or speed of the motor, provide flooded lubrication of bearings with necessary seals, piping, orifices, visual flow indication, etc., utilizing the speed increaser positive displacement lube system.

c. Temperature Indication: Provide each bearing with 3-lead, 100-ohm platinum RTDs, and junction boxes with 4-20mA transmitters for connection to remote temperature readouts on chiller control center.
OPTIONAL – A non-contacting proximity vibration monitoring system shall be provided as detailed below following Control Center.

Rotor:

a. Rotor bars must be fabricated copper, or copper alloy bars; high frequency induction-brazed to centrifugally cast copper, or copper alloy resistance rings. Uniform cross section rotor bars to be swaged to assure tight bar construction and elimination of bar vibration. The use of aluminum in rotor construction will not be acceptable.

b. Rotor to stator air gap measurements shall be made at final assembly at both ends of the motor. Readings shall be taken at 45° intervals clockwise and each reading recorded, so as to indicate the relative position of the stator, rotor as measurement location. “Twelve O’Clock” shaft position shall be permanently marked. Readings shall be included in Owner’s manuals.

c. The rotor shall be dynamically and statically balanced. Assembled motor shall be tested at the factory in accordance with latest applicable NEMA, MG 1.20.53 method of testing, and balanced to no more than 1.0 mils total peak-to-peak deflection on the bearing housing and 2.0 mils on the shaft. Overall vibration readings, including all vibration frequencies, shall be taken and recorded with the motor running at design speed. Readings shall be included in Owner’s Manual.

Space Heaters – Electric resistance space heaters shall be provided inside the motor enclosure. Capacity shall be as required to avoid moisture condensation during shutdown. Heaters shall be automatically energized by the motor starter whenever motor is shut down. Heaters shall be suitable for operation at 120 volts, single-phase, 60 (50) Hertz. Provide separate terminal box on motor with all leads terminated with ring-tongue terminals under screws.

Motor Leads – In order to provide for differential protection for the motor windings (optional), all six motor leads shall be brought out into the motor main terminal box and properly terminated with extended bus bars for NEMA 1-hole connectors.

Current Transformers (Optional) – Three current transformers of the appropriate rating and class for differential protection of the motor shall be provided and mounted in the motor main terminal box. These current transformers are to be connected to differential current protective relays to be provided in the motor starter cubicle. Differential protection CTs shall provide maximum coordinated sensitivity and utilize 50/5 or 100/5 ratios. Zone differential protection using six C.T. configuration is optional, with suitable ratios based on motor FLA. Three CTs in motor terminal box must be matched with three CTs provided in the Starter.

Surge Protection (Optional) – Provide arrestors and capacitors for motor voltage surge protection. Surge arrestors shall be station valve type rated 5.0 kV Min. Three-phase surge capacitors shall be rated 0.5 microfarads per phase. Units shall be adequately mounted and braced as indicated on the drawings.

Terminal Boxes – Manufacturer shall provide conduit boxes or terminal cabinets for all wiring connections to the motor. Boxes shall be cast iron, cast bronze, or sheet steel with a minimum thickness of 1/8 inch (3.2 mm) (11 gauge). Cover shall be bolted-on. All joints between box and cover or box and machine frame shall be sealed by means of durable gaskets resistant to heat, oil and moisture laden air. Auxiliary leads such as those provided for bearing temperature sensors, winding etc., shall be terminated on molded insulation terminal blocks in “independent” enclosed terminal boxes or compartments, effectively isolated from the line voltage main terminals.

Each terminal shall be plainly and permanently identified. Boxes shall be mounted for conduit entrance from (below) (above). All bolts and nuts shall be of hexagonal type. Stainless steel hardware is preferred, although other corrosion-resistant metal or finishes are acceptable. All fittings and threaded parts shall be protected during shipment and erection by means of moisture resistant grease or other effective means. Motor main lead terminal box shall include ample space for “stress cone” installation, and optional current transformers and/or optional surge protection. Submit shop drawings for the surge protection equipment specified above.

Nameplates – Motor nameplates shall be stainless steel. Letters shall be permanently stamped and not less than 1/8 inch (3.2 mm) high. Information to be inscribed on main nameplate shall be per NEMA MG1-20.60, with the addition of the locked rotor current at rated voltage and frequency as determined by actual test. Provide nameplates for: space heaters (voltage and wattage); number of starts per hour; bearing identification and recommended lubricant; direction of rotation; electric-phase rotation for proper direction of mechanical rotation; and motor wiring diagram.

Submittals – Contractor shall submit shop drawings, brochures and characteristic curves for review in the manner and quantity specified. Shop Drawings, data, and brochures shall include:
a. Dimensional data and stator and rotor construction details.
b. NEMA enclosure type.
c. Sound insulation.
d. Bearing and lubrication system details.
e. Resistance and temperature sensor details and location.
f. Motor terminal boxes dimensions, locations, and internal arrangements and spacings.
g. Nameplates.
h. Characteristics curves with all units expressed in percent of rated values which shall be given on the graph, as follows:
 2. Current, power factor, brake horsepower, efficiency and speed versus load.
 3. Thermal withstand curve, percent full load current vs. time in seconds. Specify ambient temperature.
 4. Maximum number of safe start-ups when starting from "cold" conditions in 25°C ambient temperature, starting intermediate waiting period and other conditions.

Tests – Motor shall be given all the following factory tests:
 a. Winding resistance.
 b. Bearing inspection.
 c. No load running current and speed.
 d. High potential test.

Test Reports – Four copies of the certified test report for each of the tests specified above shall be submitted.

Instruction Books – Manufacturer shall furnish installation, operation and maintenance manuals, parts description and identification manuals and similar instruction books in the manner and quantity specified.

Spare Parts – Motor manufacturer shall provide a recommended list of all spare parts for this particular motor including current, parts costs. In addition, provide renewal parts bulletins, price lists, factory parts numbers of all components of the motor. Quantity shall be as specified.

Manufacturers – Motor to be manufactured by ABB (ASEA/Brown-Boveri), General Electric, Ideal, Louis Allis, Reliance, Siemens, Westinghouse, or pre-approved equal.

COMPRESSOR MOTOR CONTROLLER (STARTER)

The centrifugal chiller manufacturer shall provide a full or reduced voltage, electro-mechanical starter in a free-standing NEMA enclosure, as previously specified, for safe, dependable starting of each compressor motor. Installation and wiring shall be by the electrical contractor.

Starter shall be in a one-high line up of NEMA enclosures, floor mounted, with 3-phase, horizontal AC power bus (or with incoming power terminal board if bus duct is not used). For personal safety, a positive mechanical disconnect switch shall completely ground and isolate the starter from the line connectors with a mechanically driven isolating shutter, leaving no exposed high voltage. High voltage door shall be mechanically locked closed with the disconnect. Low voltage section shall have separate door and be segregated from the high voltage section. Control power shall be provided from a control-power transformer in each starter. Current-limiting fuses for the transformer shall be provided.

Starter must comply with NEMA Standards for Industrial Control IS 3-234 CLASS E2.

Starter shall be a high-interrupting capacity, high-voltage, non-reversing type sized for the specified motor horsepower and supply voltage. Controller shall be combination starter and disconnect.

Starter shall be fused type employing current-limiting power fuses that give the starter an interrupting capacity of 400,000 kVA, 3-phase, symmetrical at 4600 volts, 60 hertz. One set of fuses shall be included. Starter shall employ magnetic vacuum contactors rated 5000 volts, and have an interrupting capacity of 50,000 kVA, 3-phase symmetrical. Line contactors shall be of the draw-out type.

Starter shall include a programmable microprocessor based motor protection system with operation features and performance equal to Westinghouse IQ 1000 II with IQ Data Plus II, Multilin 269+ with MTM, or pre-approved equal.

The motor protection module shall:
 a. Be microprocessor based and shall be programmable to allow the user to establish system parameters and enter specific motor data. The data input shall be done via a keyboard on the front of the motor starter.
 b. Have separate trip points for each function. There shall be an annunciator panel on the motor starter door to indicate which protective function has operated.
c. Include separate alarm and trip output contacts. The alarm contacts shall be wired to an alarm indicator remotely located in the chiller control panel to indicate a potential motor trip.

The motor protection module shall include:

a. Time over current.
b. Locked rotor trip.
c. Current unbalance.
d. Ground current trip.
e. Underload trip.
f. Jam.
g. Long acceleration.
h. Instantaneous current trip.
i. Over voltage and under voltage trip.
j. Phase loss, phase reversal, phase unbalance.
k. Winding over temperature (6 RTD locations).

Motor protection module shall display instantaneous readings of the following:

a. AC Amps - Phases A, B & C.
b. AC Volts - Phases A, B & C.
c. Winding Temperatures - Phases A, B & C (2-RTD/Phase)
d. Megawatts
e. Megavars
f. Power Factor
g. Frequency
h. Megawatt Demand

The motor controller panel shall also include a utility quality kilowatt transducer, for connection for input to the chiller unit control panel.

The motor controller shall also include a differential protection relay (if OPTIONAL differential current transformers are specified for motor).

The motor controller shall provide power factor correction capacitors, if required by the motor manufacturer, mounted and wired in controller enclosure. Size as required by motor manufacturer.

Control power transformer (OPTIONAL) to provide control power, 5 kVA, 120 V -1 phase - 60 (50) Hertz for chiller control exclusive of starter control requirements.

Manufacturers – Starter to be manufactured by Cutler-Hammer/Westinghouse, General Electric, Ideal, Siemens, or pre-approved equal.

PRESSURE VESSELS – ASME CODE

Pressure vessels (cooler, condenser, intercooler and pumpout receiver) as hereinafter specified shall be designed, constructed, tested and stamped in accordance with the requirements of the ASME Boiler and Pressure Vessels Code, Section VIII, Division 1. Refrigerant Side Design Working Pressure (DWP) shall be as determined by manufacturer for the refrigerant and service; and cooler and condenser water side DWP shall be as previously detailed in this specification.

COOLER AND CONDENSER

The liquid cooler and refrigerant condenser shall be of the horizontal shell and tube type with necessary integral mounting stands including provision for level-adjusting, limited rise, spring-type isolators as hereinafter specified. The shells shall be of steel with fusion welded seams having steel tube sheets welded to each end of shell, and internal intermediate tube support sheets to support tubes at 48-inch (1219 mm) maximum spacing. Shell shall be fabricated so each tube may be individually replaced. Tubes shall be roller expanded into tube sheets to ensure a gas tight joint. Integral marine water boxes, factory welded to the tube sheets, shall be furnished with removable covers to permit access to the tubes for inspections and cleaning without disturbing or breaking any piping connections. Water connections shall be radially oriented, weld end, sealed for shipment.

COOLER

Liquid cooler shall be fabricated as specified above for COOLER AND CONDENSER and shall include liquid headers and a distribution baffle to ensure optimum refrigerant distribution, and a tube bundle configuration to ensure wetting of tubes under all load conditions. Adequate space shall be provided above tube bundle for separation of refrigerant liquid and vapor, and a suction baffle or mesh eliminator shall be furnished located to ensure uniform distribution of suction gas flow and to prevent liquid from being carried over to the compressor. Cooler tubes shall be roller expanded into intermediate tube supports. The cooler shall be provided with sight ports and a suitable relief device in accordance with ANSI/ASHRAE Std. 15 – (latest edition) Safety Code (and local codes) consisting of bursting disc(s) in series with relief valve(s). Properly sized suction, liquid inlet, hot-gas bypass, liquid transfer and relief connections shall be provided.

CONDENSER

Condenser shall be fabricated as specified above for COOLER AND CONDENSER and shall include a discharge gas baffle to provide efficient distribution of discharge gas and to prevent direct impingement of gas on tubes, and an integral axial flow liquid sub-cooler, with pilot refrigerant liquid level controller and
pneumatically operated high pressure liquid valve. Properly sized discharge gas inlet, liquid outlet, hot-gas bypass, pumpout and purge connections shall be provided.

INTERCOOLER

Each multistage compressor unit shall be furnished with a flash type refrigerant intercooler to improve overall cycle efficiency.

Intercooler shall be of welded steel construction, and shall include necessary high and low pressure float valves, fully accessible without breaking piping connections, to meter refrigerant liquid flow to the cooler; and interstage gas mist eliminators. Properly sized liquid inlet, liquid outlet and interstage gas connections shall be provided, together with means of external manual operation of float valves. Provision shall be made for level-adjusting, limited rise, spring-type isolators as hereinafter specified.

REFRIGERANT TRANSFER UNIT/PUMPOUT RECEIVER

A complete compressor-operated transfer unit and horizontal pumpout receiver shall be provided to permit transfer and isolation of the refrigerant charge, as previously specified. The pumpout receiver shall be of welded steel construction and include integral floor mounting stands, dial type liquid level gauge, and dual relief arrangement in accordance with ANSI/ASHRAE Std. 15- (latest edition) Safety Code (and local codes), consisting of bursting discs in series with relief valves. Properly sized refrigerant liquid, gas and relief connections shall be provided.

The refrigerant transfer unit shall be of the open reciprocating compressor type belt drive with a 10 HP (7.5 kW) open drip proof motor, with water cooled condenser, oil separator and necessary safety controls for manual operation, including starter with fused disconnect switch and control power transformer. The refrigerant transfer unit shall be factory mounted on and piped to the receiver. Piping shall include necessary valve manifolding for efficient refrigerant liquid/gas transfer.

CONTROL CENTER

Each unit shall be furnished with a microprocessor-based, or PLC (programmable logic controller) based, control center with color graphic CRT display of all operating and protective parameters, factory assembled and wired in an upright, finish painted, rugged steel NEMA-1 enclosure with locked full height access door(s).

The control center shall contain all necessary controls and control logic to provide stand-alone automatic start-up, fail-safe fully automatic operation, electronic capacity control and safety protection of the chiller unit, speed increaser gear/electric motor drive. It shall also provide for automatic pre-lube and post-lube operation of the speed increaser gear and compressor auxiliary oil pumps (AOP); and operation of the AOPs during any low pressure lube condition. Controls shall also be included for automatic control of compressor capacity to limit maximum motor power consumption, manually adjustable 100 to 40% of chiller capacity.

Control center shall be 100 % electronic/electric, with all values displayed in the graphic CRT. Refrigerant, oil and bearing temperatures and/or pressures, and control air pressures, are all to be electronically monitored from locally mounted RTDs with transmitters and pressure transducers. Also to be monitored are pre-rotation vane, high pressure liquid valve, interstage gas valve, and hot gas valve signals; drive motor power requirements; and chilled and condenser water flows and temperatures. This data is to be displayed on a series of color graphic screens, including, but not limited to: Power-up, Screen List, Start-up/Lubrication, Main Refrigerant/Water Flow Diagram, Manual/Automatic Control, PID Tuning, Lube System Status, Refrigerant and Water Status, Miscellaneous Operating Status, and Alarm History.

The control center shall also include an Emergency Stop button, bypassing all controls. It is to be mounted on the front of the panel, together with the color graphic display and its membrane keypad, and a Power Failure Reset button. A separate hard wired high pressure cutout, remotely mounted at the compressor, shall be provided in accordance with ASHRAE/ANSI Std 15 Safety Code requirements.

All controls are to be arranged for easy access – internally wired to clearly marked terminal strips for external (field) wiring connections; wiring color coded black (control), white (neutral), and green (ground), with each wire numerically identified at both ends. A copy of the unit wiring diagram is to be provided in a pocket inside the enclosure door.

The control center is to be supplied a 5 kVA 120 volt-single phase- 60 (50) Hertz power supply (by others). The panel is to be all electric. The pre-rotation vanes, high pressure liquid valve, interstage gas valve, and hot gas valve are all to be electronically controlled and pneumatically actuated, and are to be supplied a total of 4-5 SCFM (1887 to 2359 cc/s) of clean dry filtered instrument air at 80 to 100 PSIG (312 to 390 kPa) pressure (By others). All temperature and pressure displays are to be in ________ English (Metric) units of measure.
TABLE A – INPUT LIST (See Note 1, 2, & 3)

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>DESCRIPTION</th>
<th>SIGNAL</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FT-100</td>
<td>Chilled Water Flow</td>
<td>4-20mA Note 1</td>
<td></td>
</tr>
<tr>
<td>FT-102</td>
<td>Condensing Water Flow</td>
<td>4-20mA Note 1</td>
<td></td>
</tr>
<tr>
<td>IT-160</td>
<td>Motor Amps (Single Phase)</td>
<td>4-20mA Notes 2,3</td>
<td></td>
</tr>
<tr>
<td>JT-160</td>
<td>Motor Kilowatts</td>
<td>4-20mA</td>
<td></td>
</tr>
<tr>
<td>PT-111</td>
<td>Evaporator Refrig. Pressure</td>
<td>4-20mA</td>
<td></td>
</tr>
<tr>
<td>PT-113</td>
<td>Condenser (Compr. Disch.) Pressure</td>
<td>4-20mA</td>
<td></td>
</tr>
<tr>
<td>PT-115</td>
<td>Intercooler Refrig. Pressure</td>
<td>4-20mA</td>
<td></td>
</tr>
<tr>
<td>PT-144</td>
<td>Compr. Shaft Pump Oil Pressure</td>
<td>4-20mA</td>
<td></td>
</tr>
<tr>
<td>PT-140</td>
<td>Compr. Supply Oil Pressure</td>
<td>4-20mA</td>
<td></td>
</tr>
<tr>
<td>PT-143</td>
<td>Compr. Sump Pressure</td>
<td>4-20mA</td>
<td></td>
</tr>
<tr>
<td>PT-146</td>
<td>Compr. Balance Piston Pressure</td>
<td>4-20mA</td>
<td></td>
</tr>
<tr>
<td>PT-150</td>
<td>Gear Supply Oil Pressure</td>
<td>4-20mA</td>
<td></td>
</tr>
<tr>
<td>PT-156</td>
<td>Gear Shaft Pump Oil Pressure</td>
<td>4-20mA</td>
<td></td>
</tr>
<tr>
<td>TT-111</td>
<td>Evaporator Refrig. Liquid Temp.</td>
<td>100 Ohm RTD/Transmitter</td>
<td></td>
</tr>
<tr>
<td>TT-113</td>
<td>Compressor Refrig. Discharge Temp.</td>
<td>100 Ohm RTD/Transmitter</td>
<td></td>
</tr>
<tr>
<td>TT-114</td>
<td>Condenser Refrig. Liquid Temp.</td>
<td>100 Ohm RTD/Transmitter</td>
<td></td>
</tr>
<tr>
<td>TT-147</td>
<td>Compressor Thrust Oil Temp</td>
<td>100 Ohm RTD/Transmitter</td>
<td></td>
</tr>
<tr>
<td>TT-142</td>
<td>Compr. Front Bearing Oil Temperature</td>
<td>100 Ohm RTD/Transmitter</td>
<td></td>
</tr>
<tr>
<td>TT-150</td>
<td>Gear Supply Oil Temp</td>
<td>100 Ohm RTD/Transmitter</td>
<td></td>
</tr>
<tr>
<td>TT-151</td>
<td>Gear Bearing Temp., HS Shaft End</td>
<td>100 Ohm RTD/Transmitter</td>
<td></td>
</tr>
<tr>
<td>TT-152</td>
<td>Gear Bearing Temp., HS Blind End</td>
<td>100 Ohm RTD/Transmitter</td>
<td></td>
</tr>
<tr>
<td>TT-153</td>
<td>Gear Bearing Temp., HS Shaft End</td>
<td>100 Ohm RTD/Transmitter</td>
<td></td>
</tr>
<tr>
<td>TT-154</td>
<td>Gear Bearing Temp., HS Blind End</td>
<td>100 Ohm RTD/Transmitter</td>
<td></td>
</tr>
<tr>
<td>TT-150</td>
<td>Gear Bearing Temp., HS Shaft End</td>
<td>100 Ohm RTD/Transmitter</td>
<td></td>
</tr>
<tr>
<td>TT-100</td>
<td>Chilled Water Out</td>
<td>100 Ohm RTD/Transmitter</td>
<td></td>
</tr>
<tr>
<td>TT-101</td>
<td>Chilled Water In</td>
<td>100 Ohm RTD/Transmitter</td>
<td></td>
</tr>
<tr>
<td>TT-102</td>
<td>Refrigerant Condenser Water In</td>
<td>100 Ohm RTD/Transmitter</td>
<td></td>
</tr>
<tr>
<td>TT-103</td>
<td>Refrigerant Condenser Water Out</td>
<td>100 Ohm RTD/Transmitter</td>
<td></td>
</tr>
<tr>
<td>TT-161</td>
<td>Electric Motor Drive End Bearing Temp.</td>
<td>100 Ohm RTD/Transmitter</td>
<td></td>
</tr>
<tr>
<td>TT-162</td>
<td>Electric Motor Blind End Bearing Temp.</td>
<td>100 Ohm RTD/Transmitter</td>
<td></td>
</tr>
<tr>
<td>TE-160A</td>
<td>Electric Motor Stator Temp., Phase A1</td>
<td>100 Ohm RTD Note 3</td>
<td></td>
</tr>
<tr>
<td>TE-160B</td>
<td>Electric Motor Stator Temp., Phase A2</td>
<td>100 Ohm RTD Note 3</td>
<td></td>
</tr>
<tr>
<td>TE-160C</td>
<td>Electric Motor Stator Temp., Phase B1</td>
<td>100 Ohm RTD Note 3</td>
<td></td>
</tr>
<tr>
<td>TE-160D</td>
<td>Electric Motor Stator Temp., Phase B2</td>
<td>100 Ohm RTD Note 3</td>
<td></td>
</tr>
<tr>
<td>TE-160E</td>
<td>Electric Motor Stator Temp., Phase C1</td>
<td>100 Ohm RTD Note 3</td>
<td></td>
</tr>
<tr>
<td>TE-160F</td>
<td>Electric Motor Stator Temp., Phase C2</td>
<td>100 Ohm RTD Note 3</td>
<td></td>
</tr>
<tr>
<td>PDSL-140A</td>
<td>Compressor Low Oil Pressure Switch</td>
<td>120VAC</td>
<td></td>
</tr>
<tr>
<td>PSHH-113A</td>
<td>Condenser Hi Refrig. Pressure Switch</td>
<td>120VAC</td>
<td></td>
</tr>
<tr>
<td>MPD86</td>
<td>Starter Safety Fault Lockout Relay</td>
<td>120VAC Note 2</td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td>Compr. Motor Starter Run Interlock</td>
<td>120VAC Note 2</td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td>Compr. AOP Starter Interlock</td>
<td>120VAC Note 2</td>
<td></td>
</tr>
<tr>
<td>M3</td>
<td>Gear AOP Starter Interlock</td>
<td>120VAC Note 2</td>
<td></td>
</tr>
<tr>
<td>TCS-120</td>
<td>Oil Separator Temp. Control Switch</td>
<td>120VAC Note 2</td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>Reset Push-button</td>
<td>120VAC</td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>Emergency Stop Push-button</td>
<td>120VAC</td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>Control Power</td>
<td>120VAC</td>
<td></td>
</tr>
</tbody>
</table>
TABLE B – OUTPUT LIST

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>SIGNAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressor Pre-rotation Vanes</td>
<td>4-20mA</td>
</tr>
<tr>
<td>Hot Gas Bypass Valve</td>
<td>4-20mA</td>
</tr>
<tr>
<td>Interstage Control Valve</td>
<td>4-20mA</td>
</tr>
<tr>
<td>Compressor Oil Heaters</td>
<td>120VAC</td>
</tr>
<tr>
<td>Oil Separator Heaters</td>
<td>120VAC</td>
</tr>
<tr>
<td>Gas Supply to Oil Eductor Solenoid</td>
<td>120VAC</td>
</tr>
<tr>
<td>Compressor Motor Starter Start/Stop</td>
<td>120VAC</td>
</tr>
<tr>
<td>Compressor AOP Motor Starter Control</td>
<td>120VAC</td>
</tr>
<tr>
<td>Gear AOP Motor Starter Control</td>
<td>120VAC</td>
</tr>
</tbody>
</table>

NOTES:
1. Chilled and condenser water flow measurement stations are all located outside of the chiller manufacturer scope of supply. Therefore they should be by others, and their design, selection, proper application and installation should be defined in the appropriate parts of the project specifications. These specifications should address the accuracy needed for the end use of the data intended. (Informational, performance test quality, etc.)
2. The specifications of the individual components monitored above (chiller components, speed increaser gear, electric drive motor, motor starter, etc.) shall make provisions for, and the supply of inputs listed above, such as pressure taps, block valves and 4-20mA transducers for pressure measurement; thermal wells with 3-wire 100 Ohm Platinum RTDs with 4-20mA Transmitters (except for motor stator) for temperature measurement; AOP starter interlocks; main drive motor starter interlocks, CTs, PTs, KW Transducer; etc.
3. The above inputs include monitoring of motor bearing and stator temperatures, with comprehensive and sophisticated monitoring and protection of the motor provided by incorporating a microprocessor based motor protective unit (MPU), – such as Westinghouse IQ1000/IQ Data Plus II, or Multilin 269 +/MTM- in the motor starter, as previously specified, in which case monitoring of motor stator temperatures would be accomplished by the MPU. A 4-20mA signal output is also available from the above-mentioned devices.

In all cases, a separate kilowatt transducer is required for input to the chiller panel.
VIBRATION MONITORING SYSTEM (Optional)

1. Factory-mounting:
 a. Provide Bently-Nevada 3300 or 3300 RAM series proximity probes at those radial and thrust bearings specified in paragraph 2 below.
 b. Extension cables and proximitors to be terminated in proximitor housings supplied and installed by chiller manufacturer, or sub-vendors, and mounted on the machinery skid.

2. Chiller Driveline Bearings Configurations:
 NOTE: Alternative lower cost/less definitive configurations are available. Contact your YORK representative.
 a. Compressors:
 1. Two proximity probes installed on each of two (2) radial bearings 90 degrees apart in an X-Y configuration.
 2. One proximity probe installed at the thrust bearing in a Z (axial) configuration.
 3. One keyphasor probe for speed reference signal.
 b. Speed Increasers:
 1. Two proximity probes installed on each of two (2) low-speed shaft radial bearings and each of two (2) high-speed shaft radial bearings, 90° apart in an X-Y configuration.
 2. One keyphasor probe on low speed shaft for speed reference signal.
 c. Compressor Motors: Two proximity probes installed on each of two (2) motor shaft radial bearings 90° apart in an X-Y configuration.

3. Control Panel Monitoring Configurations
 a. Chiller control panel shall monitor all vibration signals with a Bently Nevada 3300 Series Monitor for a microprocessor-based control center, or a Bently Nevada Model 2201 monitoring system, displaying those levels in a vibration monitoring screen on an Allen-Bradley PLC 5/20 and PanelView Display equipped control center.

MISCELLANEOUS

The unit manufacturer shall also furnish the following for each unit:

1. Necessary steel refrigerant piping, valves and fittings to interconnect the compressor, condenser, cooler, and intercooler including high pressure liquid and interstage gas valves; necessary automatic hot gas bypass valve, piping and fittings; and necessary refrigerant and oil gauge and control piping. Also necessary steel refrigerant piping, valves and fittings to interconnect the liquid chilling unit and the refrigerant transfer unit/pumpout receiver located within fifty (50) ft. (15,240 mm) of each other. All piping shall be furnished in accordance with ANSI-B31.5 Piping Code.

2. Oil return unit (electrically heated), and piping for field mounting, piping, and wiring.

3. Necessary external lines for compressor lubrication system.

4. Necessary compressor and gear oil pump(s) and refrigerant transfer unit compressor motor starter(s) for field mounting and wiring.

5. 5” (127 mm) dial bimetal-type thermometers for bearing supply oil, thrust bearing discharge oil, compressor sump oil, compressor refrigerant discharge gas and low pressure refrigerant liquid.

6. Special wrenches and/or special tools necessary for proper compressor installation and maintenance; and tool box.

7. Complete initial charge of refrigerant and lubricating oil for compressor and drive line components.

8. Level-adjusting (jack-screw) spring type vibration isolator assemblies, limited rise, with non-skid pads – designed for 1" (25 mm) deflection – for mounting the compressor drive line assembly, shell assembly and intercooler.

9. One coat of factory applied heavy duty Ameron Amerloc (dark blue) epoxy primer, suitable for field applied thermal and/or acoustic insulation, and finished coat paint.

SUPERVISION AND INSTRUCTION

The contractor shall include in his bid the services of the centrifugal unit manufacturer’s factory trained field representatives to supervise the drive alignment, final leak testing, charging, and initial start-up of the unit, including proper coordination with the contractor on start-up of the cooling tower(s), condenser water pump(s), and chilled water pump(s).

The contractor shall also include the services of the manufacturer’s representative to instruct the owner or his operating personnel in the proper operation and maintenance of the unit for a period of five (5) days for first unit, plus three (3) days for each additional unit.
(Optional) The contractor shall include in his bid the services of the manufacturer’s factory trained field representative to supervise the installation and the assembly of all components to be field assembled at the job site.

OTHER CONSIDERATIONS

The following items are necessary to complete the installation of the chilling unit(s), and should be detailed elsewhere in the specifications:

Construction — Openings into buildings for admission of equipment and patching of any openings made; and concrete housekeeping pads or foundations (if desired or required).

Rigging — Destination storage and hauling to job site; and rigging of unit components into final position.

Refrigerant Piping — Major and minor refrigerant piping to be cut/fit/welded/assembled (material furnished by YORK — partially pre-fabricated) to interconnect chiller unit components, including refrigerant liquid and gas connections to the refrigerant transfer unit/receiver.

Piping — Chilled and condenser water piping and valves; chilled and condenser water circuit drain and vent valves, and piping to drain (if desired); chilled and condenser water flow measuring stations, thermometers and pressure gauges; water supply and drain piping to drive line oil coolers beyond unit base; water supply and return piping to refrigerant transfer unit condenser. Refrigerant relief vent lines from relief devices (liquid chilling unit and pumpout receiver) to outside (as required by codes).

Compressed Air Source and Pneumatic Piping — Necessary compressed air equipment, piping, valves and filter regulators to supply clean, dry instrument quality air (80 to 100 PSIG / 312 to 390 kPa) to the pneumatic vane actuator, high pressure liquid valve, interstage gas valve, and hot gas valve.

Electrical — Power wiring from power source to compressor motor starter, and from starter to motor; control interlock wiring between unit control center and compressor motor starter. Auxiliary oil pump and refrigerant transfer unit motor power wiring from power source to starters and from starters to motors. Control wiring from power source to liquid chilling unit control center, and all necessary interconnecting control wiring from Control Center to all unit Input/Output locations; including fused disconnects, circuit breakers, terminal lugs, etc., as required. Chilled water pump and cooling tower fan motor starters; chilled and condenser water flow switches, and other related control devices; including all power and control wiring for these devices.

Insulation and Painting — Thermal and acoustic insulation, and finish painting of unit, as required. (If Free Cooling option is specified, it will normally be desirable to require anti-sweat thermal insulation of condenser water boxes and piping).
The following factors can be used to convert from English I-P (inch pounds) to the most common SI Metric values.

<table>
<thead>
<tr>
<th>MEASUREMENT</th>
<th>MULTIPLY THIS ENGLISH VALUE</th>
<th>BY</th>
<th>TO OBTAIN THIS METRIC VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPACITY</td>
<td>TONS REFRIGERANT EFFECT (ton)</td>
<td>3.516</td>
<td>KILOWATTS REFRIGERATION (kW)</td>
</tr>
<tr>
<td>POWER</td>
<td>KILOWATTS (kW)</td>
<td>NO CHANGE</td>
<td>KILOWATTS (kW)</td>
</tr>
<tr>
<td>HORSEPOWER</td>
<td>HORSEPOWER (hp)</td>
<td>0.7457</td>
<td>HORSEPOWER (kW)</td>
</tr>
<tr>
<td>FLOW RATE</td>
<td>GALLONS / MINUTE (gpm)</td>
<td>0.0631</td>
<td>LITERS / SECOND (L/s)</td>
</tr>
<tr>
<td>LENGTH</td>
<td>FEET (ft)</td>
<td>304.8</td>
<td>MILLIMETERS (mm)</td>
</tr>
<tr>
<td></td>
<td>INCHES (in)</td>
<td>25.4</td>
<td>MILLIMETERS (mm)</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>POUNDS (lb)</td>
<td>0.4536</td>
<td>KILOGRAMS (kg)</td>
</tr>
<tr>
<td>VELOCITY</td>
<td>FEET / SECOND (fps)</td>
<td>0.3048</td>
<td>METERS / SECOND (m/s)</td>
</tr>
<tr>
<td>PRESSURE DROP</td>
<td>FEET OF WATER (ft)</td>
<td>2.989</td>
<td>KILOPASCALS (kPa)</td>
</tr>
<tr>
<td></td>
<td>POUNDS / SQ. INCH (psi)</td>
<td>6.895</td>
<td>KILOPASCALS (kPa)</td>
</tr>
</tbody>
</table>

TEMPERATURE

To convert degrees Fahrenheit (°F) to degrees Celsius (°C), subtract 32° and multiply by 5/9 or 0.5556.

FOULING FACTOR

<table>
<thead>
<tr>
<th>ENGLISH I-P (ft² °F hr/Btu)</th>
<th>EQUIVALENT SI METRIC (m² °C/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00025</td>
<td>0.000044</td>
</tr>
<tr>
<td>0.00050</td>
<td>0.000088</td>
</tr>
<tr>
<td>0.00075</td>
<td>0.000132</td>
</tr>
<tr>
<td>0.00100</td>
<td>0.000176</td>
</tr>
</tbody>
</table>

EFFICIENCY

In the English I-P system, chiller efficiency is measured in kW / ton:

\[
\text{kW / ton} = \frac{\text{kW input}}{\text{tons refrigerant effect}}
\]

In the SI Metric system, chiller efficiency is measured in Coefficient of Performance (COP).

\[
\text{COP} = \frac{\text{kW refrigeration effect}}{\text{kW input}}
\]

kW / ton and COP are related as follows:

\[
\text{kW/ton} = \frac{3.516}{\text{COP}}
\]

\[
\text{COP} = \frac{3.516}{\text{kW/ton}}
\]

INTEGRATED PART LOAD VALUE (IPLV or APLV)

In the English I-P system, IPLV is calculated by the following formula.

\[
\text{IPLV} = \frac{1}{A + \frac{0.17}{B} + \frac{0.39}{C} + \frac{0.33}{D}}
\]

Where:

- \(A = \frac{\text{kW / ton at 100% Load}}{\text{kW input}} \)
- \(B = \frac{\text{kW / ton at 75% Load}}{\text{kW input}} \)
- \(C = \frac{\text{kW / ton at 50% Load}}{\text{kW input}} \)
- \(D = \frac{\text{kW / ton at 25% Load}}{\text{kW input}} \)

In SI Metric, the formula is:

\[
\text{IPLV} = \frac{1}{0.17A + 0.39B + 0.33C + 0.11D}
\]

Where:

- \(A = \frac{\text{COP at 100% Load}}{\text{kW input}} \)
- \(B = \frac{\text{COP at 75% Load}}{\text{kW input}} \)
- \(C = \frac{\text{COP at 50% Load}}{\text{kW input}} \)
- \(D = \frac{\text{COP at 25% Load}}{\text{kW input}} \)

*1 Integrated Part Load Value (IPLV) is a single number part-load efficiency figure of merit calculated per the method, and at the Standard Rating Conditions (54-44 / 85-95) defined and detailed in ARI Standard 550 (Latest Edition)-Centrifugal and Rotary Screw Water-Chilling Packages.

Application Part Load Value (APLV) is a single number part-load efficiency figure of merit, comparable to IPLV, calculated at specific project operating conditions, as defined and detailed in ARI Standard 550 (Latest Edition).